Computer Science (Information Assurance Concentration), BS
Bachelor of Science, 2016-2017 Catalog Year
ESCSEIBS

FALL-1
- ENG 101 (3) 1st-Year Comp.
- FSE 100 (2) Intro to Engin.
- ASU 101 (1) ASU Exper.
- MAT 265 (3) CALC I
- CSE 110 (3) Principles of Programming Java
- HU/SB (3)

15 HOURS

SPRING-2
- ENG 102 (3) 1st-Year Comp.
- **LAB SCI Option (4)
- GENERAL ELE (3)
- MAT 266 (3) CALC II
- CSE 205 (3) Object-Oriented Programming
- HU/SB (3)

16 HOURS

FALL-3
- MAT 267 (3) CALC III
- MAT 243 (3) Discrete Math
- CSE 240 (3) Programming Languages
- HU/SB (3)

16 HOURS

SPRING-4
- **LAB SCI (4 hrs) Sequence Part 1 of 2
- **LAB SCI (4 hrs) Sequence Part 2 of 2
- MAT 343 (3) Applied Linear Algebra
- CSE 290 (3) Computer Organization
- HU/SB (3)

16 HOURS

FALL-5
- Upper Division HU/SB (3)
- IEE 380 (3) Prob. & Stats.
- **TECH ELE (3)
- CSE 310 (3) Data Struct. & Algorithms
- CSE 360 (3) Intro. Software Eng.
- HU/SB (3)

16 HOURS

SPRING-6
- **TECH ELE (3)
- CSE 310 (3) Prin. Prog. Lang
- CSE 330 (3) Operating Systems
- HU/SB (3)

15 HOURS

FALL-7
- +CSE 465 (3) Information Assurance (F)
- +CSE 468 (3) Computer Network Security (F)
- +CSE 469 (3) Computer and Network Forensics (S)
- IEE 380 (3) Prob. & Stats.
- CSE 486 (3) Information Assurance (F)
- +IA ELEC (3)

14 HOURS

SPRING-8
- **TECH ELE (3)
- CSE 485 (3) Capstone I (L)
- CSE 486 (3) Capstone II (L)
- **TECH ELE (3)
- IEE 380 (3) Prob. & Stats.
- CSE 466 (3) Computer Systems Security (F)
- CSE 467 (3) Computer and Network Forensics (S)
- +IA ELEC (3)

12 HOURS

Notes: ** See CIDSE Advising Center or CIDSE Website (http://cidse.engineering.asu.edu/degreerequirementsbscs/) for approved technical electives and approved lab science sequence courses.
† CSE 301 requires FSE 100 as an additional prerequisite
‡ CSE 340 requires CSE 230 as an additional prerequisite
+ IA Concentration courses required CSE 310 and/or CSE 360 as a prerequisite.
Shaded courses designates critical requirements. Minimum ‘C’ grade required in all CSE major courses.
Bolded courses are offered in specific terms only

Prerequisite
Term 1
FSE 100: Introduction to Engineering - Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.
MAT 265: Calculus for Engineers I - Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270.
ASU 101-CSE: The ASU Experience
ENG 101: First-Year Composition
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 2
CSE 205: Object-Oriented Programming & Data Structures - Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.
MAT 266: Calculus for Engineers II - Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series
ENG 102: First-Year Composition
Lab Science Option: choose from BIO, GLG, CHM or PHY
General Elective

Term 3
CSE 120: Digital Design Fundamentals - Number systems, conversion methods, binary and complement arithmetic, Boolean algebra, circuit minimization, ROMs, PLAs, flipflops, synchronous sequential circuits
MAT 243: Discrete Mathematical Structures - Logic, sets, functions, elementary number theory and combinatorics, recursive algorithms, and mathematical reasoning, including induction. Emphasizes connections to computer science.
MAT 267: Calculus for Engineers III - Vector-valued functions of several variables, partial derivatives, multiple integration OR
CSE 294: Logic in Computer Science - This course is a mathematically solid introduction to propositional logic, first order logic, logic programming, and their applications in computer science.
Lab Science: PHY 121 & 131 or CHM 113 & 116 or GLG 101 & 103 or BIO 181 & 182
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 4
CSE 240: Introduction to Programming Languages - Introduces the procedural (C/C++), applicative (LISP/Scheme), and declarative (Prolog) languages.
Lab Science: complete sequence from above
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 5
CSE 301: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.
CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.
CSE 360: Introduction to Software Engineering - Software life cycle models; project management, team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues.
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 6
CSE 340: Principles of Programming Languages - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.
CSE 355: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.
CSE 330: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.
Technical Elective: Upper Division Elective
HU/SB: Upper Division Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 7
CSE 465: Information Assurance - Concepts of information assurance (IA); basic IA techniques, policies, risk management, administration, legal and ethics issues.
CSE 485: Computer Science Capstone Project I - First course in capstone sequence for computer science majors emphasizing development process, technical skills, teamwork, and communication.
IA Core
IA Core
General Elective (2 credits)

Term 8
CSE 486: Computer Science Capstone Project II - Second course in capstone sequence for computer science majors continuing the development process, technical skills, teamwork, and communication.
IA Core
IA Elective
Technical Elective: Upper Division Elective