Computer Engineering Graduate Program
Prospective Student Information and Study Guide

Computer Engineering graduate students should have knowledge in the following topics prior to applying for the program at Arizona State University: Digital VLSI, Discrete Math, Digital Signal Processing, Computer Architecture & Organization, and Algorithms & Data Structures.

If admitted to the Computer Engineering graduate program an exam will be administered on the first day of class to gauge knowledge in the topics. This exam will count towards your overall grade in the Core course, percentile will be determined by the instructor, so it is highly advised that you have taken a related course and use this study guide to refresh your knowledge prior to arriving at ASU. Based on the results of the exam it may be recommended that you take the corresponding course at ASU to better prepare you for the Computer Engineering graduate program.

For each of the topics there is a suggested book and list of topics along with suggested Chapters from the book in some cases. Note that a student is free to study from any other relevant book on the subject.

Digital VLSI (ASU Course: EEE 335)

1. Diode -- static and dynamic behavior. (Chapter 3)
2. MOSFET transistor -- static and dynamic behavior. (Chapter 3)
3. CMOS inverter characteristics including switching threshold, propagation delay, power consumption. (Chapter 5)
4. Designing complex CMOS gates, Boolean logic.

EEE 335 Course Textbook: Microelectronic Circuits by Sedra/Smith. 6th Edition

Discrete Mathematics (ASU Course: MAT 243)

1. Foundations: Logic and Proofs: understand mathematical reasoning and ability to construct mathematical proofs; mathematical induction. (Chapter 1 & 5)
2. Combinatorial Analysis: ability to solve counting problems. (Chapter 6 & 8)
3. Elementary Number Theory: (Chapter 4)
4. Discrete Probability: fundamentals of probability theory, conditional probability, random variables. (Chapter 7)
5. Graph Theory: basics of graph theory including properties of trees. (Chapter 10-11)
Digital Signal Processing (ASU Course: EEE 203)

1. Signals: continuous-time and discrete-time; unit step; unit impulse; sinusoids; transformations of the time variable. (Chapter 1)

2. Systems: LTI systems -- linearity, time-invariance, causality, stability; impulse response; convolution (graphical as well as analytical); block diagrams, input-output equations. (Chapter 1, 2)

3. Fourier Transform (FT): calculation of forward and inverse transform of simple signals; use FT properties to determine the FT of a transformed signal; frequency response. (Chapter 4)

4. Discrete-time Fourier Transform (DTFT): calculation of forward and inverse transform of simple signals; use DTFT properties to determine the DTFT of a transformed signal; frequency response. (Chapter 5)

5. Sampling: converting a continuous-time signal to a discrete-time signal; sampling theorem. (Chapter 7)

6. z-Transform: calculation of forward and inverse transform of simple signals; region of convergence; properties. (Chapter 10)

Computer Architecture & Organization (ASU Course: CSE 230)

1. Assembly Language Programming: Understand assembly language, and write assembly language programs for simple problems.

2. Procedure Calling Convention: Know about register conventions, including caller saved, callee saved, argument and return value registers. Student should be able to write procedures and recursive functions in assembly language.

3. Data Representation: Understand the data representation (unsigned, 2’s complement, and floating point) inside the processor, and perform arithmetic operations on them. An understanding of hardware structures to perform these operations will be a plus.

4. Pipelined Processor Design: Understand the working of a single-cycle, and pipelined processor. Pipeline hazards, and basic techniques on how to avoid them.

5. Memory Hierarchy: Understand the rationale behind the memory organization, and know how caches operate.

6. I/O: Have a basic understanding of storage and I/O.

7. Advanced Computer Architecture: Be aware of the trends in computer organization and design, including superscalar, multi-threading, and multi-core architectures.
Algorithms and Data Structures (ASU Course: CSE 310)

1. Basics of algorithm design and analysis (Chapter 1 to 3).
2. Divide and Conquer (Chapter 4)
3. Elementary Data Structure, hash tables (Chapter 10,11)
4. Sorting: Heapsort (Chapter 6), Quicksort (Chapter 7), Radix Sort and Bucket Sort (Chapter 8)
5. Searching: Binary Search Trees. (Chapter 12), red-black tees (Chapter 13.1-4)
6. Dynamic Programming (Chapter 15)
7. Greedy Algorithms. (Chapter 16)
8. Minimum Spanning Tree (Chapter 23)
9. Shortest-Path Problems (Chapter 24-25)
10. Elementary Graph Theory (Chapter 22)
11. String Matching (Chapter 32)
12. NP-completeness (Chapter 34)