Term 1
ENG 101: First-Year Composition
ASU 101-CSE: The ASU Experience
FSE 100: Introduction to Engineering-Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.
MAT 265: Calculus for Engineers I-Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270.
Basic Science Elective: GLG 101, CHM 113, PHY 111/113
PSY 101: Introduction to Psychology-Major areas of theory and research in psychology. Requires participation in department-sponsored research or an educationally equivalent alternative activity.

Term 2
ENG 102: First-Year Composition
ECN 212: Microeconomics Principles-Basic microeconomic analysis. Theory of exchange and production, including the theory of the firm.
MAT 266: Calculus for Engineers II-Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series
PHY 121/122: University Physics I: Mechanics and laboratory-Kinematics; Newton's laws; work, energy, momentum, conservation laws; dynamics of particles, solids, and fluids. Both PHY 121 and PHY 122 must be taken to secure SQ General Studies credit.

Term 3
CHM 114: General Chemistry for Engineers - Chemical principles with emphasis toward engineering. Students without high school chemistry or chemical engineering majors must enroll in the CHM 113, 116 sequence instead of CHM 114.
OR CHM 116: General Chemistry II (pre-req is CHM 113)- Continuation of CHM 113. Equilibrium theory, thermodynamics, kinetics, electrochemistry, nuclear chemistry, descriptive chemistry.
ACC 231: Uses of Accounting I-Introduces the uses of accounting information focusing on the evolution of the business cycle and how accounting information is used for internal and external purposes.
CSE 205: Object-Oriented Programming & Data Structures-Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.
MAT 267: Calculus for Engineers III -Vector-valued functions of several variables, partial derivatives, multiple integration.
Global Eng or Sustainability or Entrepreneurship Elective: choose one of the following: SOS 100, 110 or 111, or SES 106 or FSE 301

Term 4
COM 263: Elements of Intercultural Communication-Basic concepts, principles, and skills for improving communication among persons from different minority, racial, ethnic, and cultural backgrounds.
ACC 241: Uses of Accounting II-Introduces the uses of accounting information focusing on the evolution of the business cycle and how accounting information is used for internal and external purposes.
MAT/SCI course: Depends on Industry Focus Area (Business Analytics or Software Engineering).

IEE 431: Engineering Administration-Introduces quantitative and qualitative approaches to management functions, engineering administration, organizational analysis, decision making, and communication.
IEE 381: Lean Six Sigma Methodology-Define, measure, analyze, improve and control (DMAIC) steps of six sigma methodology for business and quality improvement. Reviews the necessary statistical tools and illustrates their integration into the problem-solving process. Overview of lean principles and design for six sigma. Unique features of applying six sigma and DMAIC in transactional and service organizations.
Math or Science Elective: Depends on Industry Focus Area (Business Analytics or Software Engineering)

Term 6
IEE 369: Work Analysis and Design(L)-Planning, analysis, and design of methods of accomplishing work. Emphasizes human factors, work planning, methods analysis and design, and work measurement. Applications in diverse fields.
IEE 458: Project Management-Life-cycle processes for selecting and managing large-scale projects to ensure successful completion. Topics include project phases, defining milestones, work breakdown structure, group decision making and teamwork, organizational structure, human resource management, technological and economic feasibility, configuration management, budget control, and resource allocation and scheduling. Use of modern tools for planning and controlling project performance.
IEE 477: System Dynamics and Thinking-Methods for the modeling and analysis of system dynamics; metrics to measure business performance; continuous simulation tools for evaluation of system performance over time.
IEE 321 Ethics and Tech Comm-Methods and tools for preparing students for work in industry including ethics, technical writing and communications; understanding how learned undergraduate skills are used in the workplace and in engineering problem solving.
Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)
Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)

Term 7
IEE 454: Risk Management-Methods and tools for identifying, assessing, mitigating and controlling risk in business and engineering design activities. Decision tools include cost-benefit analysis, decision trees, value of information, Bayesian statistical decision making, fault trees, and failure modes and effects analysis (FMEA).
HU & H: Humanities and Historical Awareness
IEE 485: Systems Design Capstone I (L)-Senior capstone project provides students with the skills required to effectively complete a capstone project in design and development.
Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)
Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)

Term 8
IEE 456: Introduction to Systems Engineering-Foundation course addressing the concepts needed for successful system planning, design and build process. Topics include successfully bringing large-scale systems to completion on schedule and on budget, modeling and cost estimating techniques, risk and variability.
Upper Division HU: Humanities
IEE 486: Systems Design Capstone II (L) – In individual or team capstone project in creative design and synthesis.
IEE 320 Extreme Excel-Today’s workplace environment for engineers demands advanced skills in using worksheet applications such as Microsoft Excel. Course addresses this important gap in the curriculum to provide support for students who are in need of training on the various capabilities of the software. In particular, students become familiar with various functionalities that are critical for performing their jobs as engineers.
Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)