ONLINE Engineering Management, BSE
Bachelor of Science in Engineering, 2018 Catalog Year
ESEMGBSE

FALL-1
ENG 101 (3) 1st-Year Comp.
ASU 101- UC (1) ASU Experience
FSE 100 (2) Intro to Engineering
Basic Science Elective (3)
PSY 101 (3) Intro to Psych
15 HOURS

SPRING-2
ENG 102 (3) 1st-Year Comp.
ECN 212 (3) Microeconomics
MAT 265 (3) CALC I
16 HOURS

FALL-3
CHM 114 (4) ChM for Engnr OR CHM 116 (4) Gen ChM II
ACC 231 (3) Uses of Acctg Info I
PHY 121 & 122 (3 & 1) University Physics I: and Laboratory
Global Eng or Sustainability or Entreprenurship Elective (3)
16 HOURS

SPRING-4
COM 263 (3) Intercultural Communication
CSE 205 (3) Principles of Programming & Data Structures
MAT 266 (3) CALC II
MAT/SCI FOR FOCUS AREA* (3)
14 HOURS

FALL-5
IEE 300 (3) Economic Analysis for Engr
IEE 380** (3) Prob. & Stats.
15 HOURS

SPRING-6
IEE 369 (3) Work Analysis & Design (L)
IEE 381** (3) Lean Six Sigma Methodology
IEE 321 (1) Ethics & Technology
FOCUS AREA* (3) business analytics or software engr.
16 HOURS

FALL-7
IEE 404* (3) Risk Management
IEE 458* (3) Project Mgmt.
IEE 454* (3) Intro to Systems Engr
IEE 485 (3) Capstone I (L)
FOCUS AREA* (3) business analytics or software engr.
15 HOURS

SPRING-8
IEE 456 (3) Intro to Systems Engr
IEE 486 (3) Capstone II (L)
IEE 320 (1) Extreme Excel
FOCUS AREA* (3) business analytics or software engr.
13 HOURS

*Review EM Major Map for specific focus area courses for Business Analytics or Software Engineering focus areas: http://cidse.engineering.asu.edu/forstudent/undergraduate/majors/engineering-management-bse/degree-requirements-online/
Shaded courses designate critical requirements.
*IEE380 is the prerequisite to many IEE upper division courses
Prerequisite Pre or Co-requisite
Color Coding Key: Completed Requirements Enrolled Need to Retake

Cultural
Global
Historical
Term 1
ENG 101: First-Year Composition
ASU 101-CSE: The ASU Experience
FSE 100: Introduction to Engineering-Introduces the engineering design process, working in engineering teams, professional engineering; engineering models, written and oral technical communication skills.
MAT 265: Calculus for Engineers I-Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270.
Basic Science Elective: GLG 101, CHM 113, PHY 111/113
PSY 101: Introduction to Psychology-Major areas of theory and research in psychology. Requires participation in department-sponsored research or an educationally equivalent alternative activity.

Term 2
ENG 102: First-Year Composition
ECN 212: Microeconomics Principles-Basic microeconomic analysis: theory of exchange and production, including the theory of the firm.
MAT 266: Calculus for Engineers II-Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series
PHY 121/122: University Physics I: Mechanics and laboratory-Kinematics; Newton's laws; work, energy, momentum, conservation laws; dynamics of particles, solids, and fluids. Both PHY 121 and PHY 122 must be taken to secure SQ General Studies credit.

Term 3
CHM 114: General Chemistry for Engineers-Chemical principles with emphasis toward engineering. Students without high school chemistry or chemical engineering majors must enroll in the CHM 113, 116 sequence instead of CHM 114.
OR CHM 116: General Chemistry II (pre-req is CHM 113)-Continuation of CHM 113. Equilibrium theory, thermodynamics, kinetics, electrochemistry, nuclear chemistry, descriptive chemistry.
ACC 231: Uses of Accounting I-Introduces the uses of accounting information focusing on the evolution of the business cycle and how accounting information is used for internal and external purposes.
CSE 205: Object-Oriented Programming & Data Structures-Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.
MAT 267: Calculus for Engineers III-Vector-valued functions of several variables, partial derivatives, multiple integration.

Global Eng or Sustainability or Entrepreneurship Elective: choose one of the following: SOS 100, 110 or 111, or SES 106 or FSE 301

Term 4
COM 263: Elements of Intercultural Communication-Basic concepts, principles, and skills for improving communication among persons from different minority, racial, ethnic, and cultural backgrounds.
ACC 241: Uses of Accounting II-Introduces the uses of accounting information focusing on the evolution of the business cycle and how accounting information is used for internal and external purposes.
MAT/SCI course: Depends on Industry Focus Area (Business Analytics or Software Engineering).

Term 5
IEE 300: Economic Analysis for Engineers-Economic evaluation of alternatives for engineering decisions, emphasizing the time value of money.
MGT 300: Organization and Management Leadership-Analyzes strategic, behavioral, and human resource management perspectives, including principles of strategic management and leadership of human resources.
IEE 431: Engineering Administration-Introduces quantitative and qualitative approaches to management functions, engineering administration, organizational analysis, decision making, and communication.
IEE 381: Lean Six Sigma Methodology-Define, measure, analyze, improve and control (DMAIC) steps of six sigma methodology for business and quality improvement. Reviews the necessary statistical tools and illustrates their integration into the problem-solving process. Overview of lean principles and design for six sigma. Unique features of applying six sigma and DMAIC in transactional and service organizations.

Math or Science Elective: Depends on Industry Focus Area (Business Analytics or Software Engineering)

Term 6
IEE 369: Work Analysis and Design(L)-Planning, analysis, and design of methods of accomplishing work. Emphasizes human factors, work planning, methods analysis and design, and work measurement. Applications in diverse fields.
IEE 458: Project Management-Life-cycle processes for selecting and managing large-scale projects to ensure successful completion. Topics include project phases, defining milestones, work breakdown structure, group decision making and teamwork, organizational structure, human resource management, technological and economic feasibility, configuration management, budget control, and resource allocation and scheduling. Use of modern tools for planning and controlling project performance.
IEE 477: System Dynamics and Thinking-Methods for the modeling and analysis of system dynamics; metrics to measure business performance; continuous simulation tools for evaluation of system performance over time.
IEE 321 Ethics and Tech Comm-Methods and tools for preparing students for work in industry including ethics, technical writing and communications; understanding how learned undergraduate skills are used in the workplace and in engineering problem solving.

Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)

Term 7
IEE 454: Risk Management-Methods and tools for identifying, assessing, mitigating and controlling risk in business and engineering design activities. Decision tools include cost-benefit analysis, decision trees, value of information, Bayesian statistical decision making, fault trees, and failure modes and effects analysis (FMEA).
HU & H: Humanities and Historical Awareness
IEE 485: Systems Design Capstone I (L)-Senior capstone project provides students with the skills required to effectively complete a capstone project in design and development.

Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)

Term 8
IEE 456: Introduction to Systems Engineering-Foundation course addressing the concepts needed for successful system planning, design and build process. Topics include successfully bringing large-scale systems to completion on schedule and on budget, modeling and cost estimating techniques, risk and variability.
Upper Division HU: Humanities
IEE 486: Systems Design Capstone II (L)-Individual or team capstone project in creative design and synthesis.
IEE 320 Extreme Excel-Today's workplace environment for engineers demands advanced skills in using worksheet applications such as Microsoft Excel. Course addresses this important gap in the curriculum to provide support for students who are in need of training on the various capabilities of the software. In particular, students become familiar with various functionalities that are critical for performing their jobs as engineers.

Industry Focus Area Elective (see the Major Map for options or meet with CIDSE Advising)