Computer Science, BS
Bachelor of Science, 2019-2020 Catalog Year
ESCSEBS

FALL-1	SPRING-2	FALL-3	SPRING-4	FALL-5	SPRING-6	FALL-7	SPRING-8
ENG 101 (3)	ENG 102 (3)	**LAB SCI**	**LAB SCI**	CSE 365 (3)	Upper Division	+CSE 4XX	+CSE 4XX
1st-Year Comp.	1st-Year Comp.	(4) Sequence	(4) Sequence	Information Assurance	HU/ SB (3)	(3)	(3)
FSE 100 (2)	ASU 101 (1)	**LAB SCI**	**LAB SCI**	IEE 380 (3)	+CSE 412 or	+CSE 4XX	**TECH ELE**
Intro to Engr.	ASU Experience	(4) Sequence	(4) Sequence	Prob. & Stats.	+CSE 434 or	(3)	(3)
				Computing	+CSE 445 (3)		
		MAT 267 (3)	MAT 267 (3)	MAT 343 (3)	CSE 355 (3)	GENERAL	**TECH ELE**
CALC I	CALC II	CALC III or	Applied Linear	Computing	Elect (2)	ELECT (2)	(3)
		CSE 259 Logic	Algebra	Ethics			
		in Comp Sci					
MAT 243 (3)	CSE 205 (3)	CSE 240 (3)	CSE 310 (3)	CSE 365 (3)	CSE 45 (3)	+CSE 4XX	+CSE 4XX
Discrete Math	Object-Oriented	Programming Languages	Data Struct. &	Intro Theoretical	Capstone I (L)	(3)	(3)
Programming		Algorithms	Comp. Science				
CSE 120 (3)	CSE 230 (3)	CSE 360 (3)	CSE 330 (3)	**TECH ELE**			
Digital Design	Comp. Org. &	Intro. Prog. Lang	Operating	(3)	(3)		
Assembly Lang.	Engineering						
	Programming						
15 HOURS | 16 HOURS | 16 HOURS | 16 HOURS | 16 HOURS | 15 HOURS | 14 HOURS | 12 HOURS

Notes: **See CIDSE Advising Center or CIDSE Website (http://cidse.engineering.asu.edu/degerequirementsbscs/) for approved technical electives and approved lab science sequence courses.
‡ CSE 301 requires FSE 100 as an additional prerequisite
CSE 340 and CSE 434 require CSE 230 as an additional prerequisite
+ CSE 4XX courses require CSE 310 and/or 360 as prerequisites
Shaded courses designate critical requirements
Minimum "C" grade required in all CSE major courses

Prerequisite

Cultural
Global
Historical
Term 1
FSE 100: Introduction to Engineering - Introduces the engineering design process; working in engineering teams; the profession of engineering; engineering models, written and oral technical communication skills.
MAT 265: Calculus for Engineers I - Limits and continuity, differential calculus of functions of one variable, introduction to integration. Not open to students with credit in MAT 270
ASU 101-CSE: The ASU Experience
ENG 101: First-Year Composition
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 2
CSE 205: Object-Oriented Programming & Data Structures - Problem solving by programming with an object-oriented programming language. Introduces data structures. Overview of computer science topics.
MAT 266: Calculus for Engineers II - Methods of integration, applications of calculus, elements of analytic geometry, improper integrals, Taylor series
ENG 102: First-Year Composition
Lab Science Option: choose from BIO 181, GLG 101 &103, GLG 110 & 111, CHM 113 or 114, OR PHY 121 & 122
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 3
CSE 120: Digital Design Fundamentals - Number systems, conversion methods, binary and complement arithmetic, Boolean algebra, circuit minimization, ROMs, PLAs, flipflops, synchronous sequential circuits
MAT 243: Discrete Mathematical Structures - Logic, sets, functions, elementary number theory and combinatorics, recursive algorithms, and mathematical reasoning, including induction. Emphasizes connections to computer science.
MAT 267: Calculus for Engineers III - Vector-valued functions of several variables, partial derivatives, multiple integration OR
CSE 259: Logic in Computer Science - This course is a mathematically solid introduction to propositional logic, first order logic, logic programming, and their applications in computer science.
Lab Science: PHY 121/122 & PHY 131/132 or CHM113 & 116 or GLG 101/103 & GLG 102/104 or BIO 181 & 182
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 4
CSE 240: Introduction to Programming Languages - Introduces the procedural (C/C++), applicative (LISP/Scheme), and declarative (Prolog) languages.
Lab Science: complete sequence from above
HU/SB: Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 5
CSE 365: Information Assurance - Concepts of information assurance (IA); basic IA techniques, policies, risk management, administration, legal and ethics issues.
CSE 301: Computing Ethics - Ethics for computing majors: history of computing, intellectual property, privacy, ethical frameworks, professional ethical responsibilities, and risks of computer-based systems.
CSE 310: Data Structures and Algorithms - Advanced data structures and algorithms, including stacks, queues, trees (B, B+, AVL), and graphs. Searching for graphs, hashing, external sorting.
CSE 360: Introduction to Software Engineering - Software life cycle models; project management; team development environments and methodologies; software architectures; quality assurance and standards; legal, ethical issues
IEE 380: Probability and Statistics for Engineering Problem Solving - Applications-oriented course with computer-based experience using statistical software for formulating and solving engineering problems
General Elective

Term 6
CSE 330: Operating Systems - Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems.
CSE 340: Principles of Programming Languages - Formal syntactic and semantic descriptions, compilation and implementation issues, and theoretical foundations for several programming paradigms.
CSE 355: Introduction to Theoretical Computer Science - Introduces formal language theory and automata, Turing machines, decidability/undecidability, recursive function theory, and complexity theory.
CSE 412 Database Management - Introduces DBMS concepts. Data models and languages. Relational database theory. Database security/integrity and concurrency) OR CSE 434 Computer Networks (Network architecture and protocols, principles of network applications, socket programming, flow and congestion control, switching and routing, link-layer technologies, traffic capture and analysis, security) OR CSE 445 Distributed Software Development (Distributed system architectures and design, service-oriented computing, and frameworks for development of distributed applications and software components)
HU/SB: Upper Division Humanities, Fine Arts & Design or Social & Behavioral Sciences

Term 7
CSE 485: Computer Science Capstone Project I - First course in capstone sequence for computer science majors emphasizing development process, technical skills, teamwork, and communication.
CSE 4** Elective

Term 8
CSE 486: Computer Science Capstone Project II - Second course in capstone sequence for computer science majors continuing the development process, technical skills, teamwork, and communication.
CSE 4** Elective
Technical Elective: Upper Division Elective
General Elective (2 credits)

Term 9

Term 10

Term 11

Term 12

Term 13

Term 14

Term 15

Term 16

Term 17

Term 18