School of Computing, Informatics, and Decision Systems Engineering

Intelligence unleashed
Computing for a “smart” world

2017 Report
Ira A. Fulton Schools of Engineering
Arizona State University
The Ira A. Fulton Schools of Engineering at Arizona State University offers 25 undergraduate programs and 41 graduate programs in its six schools:

| School of Biological and Health Systems Engineering | School of Computing, Informatics, and Decision Systems Engineering | School of Electrical, Computer and Energy Engineering | School for Engineering of Matter, Transport and Energy | School of Sustainable Engineering and the Built Environment | The Polytechnic School |

In the U.S., one in 72 graduating undergraduate engineers is a Sun Devil.

- **$104M** Research expenditures FY2016-2017
- **19** NSF CAREER awardees in the last three years

<table>
<thead>
<tr>
<th>#3</th>
<th>Licenses and Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Behind only Purdue and Carnegie Mellon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#4</th>
<th>IP Disclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Behind only Carnegie Mellon, Caltech and Purdue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#4</th>
<th>Startups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Behind only Purdue, Carnegie Mellon and Stanford</td>
</tr>
</tbody>
</table>

Comparative data per $10 million in research expenditures, based on the Association of University Technology Managers annual report of top national engineering schools.

Lead institution on two and partner on two National Science Foundation Engineering Research Centers

- QESST
- CBBG: Center for Biomanufacturing & Bio-inspired Geotechnics
- NEWT
- FREEDM Systems Center

Lead institution on the Department of Homeland Security Center of Excellence

**CAOE**

Center for Accelerating Operational Efficiency

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

#1 in the U.S. for innovation

ASU ahead of Stanford and MIT

A new era for computing sciences at Arizona State University

The School of Computing, Informatics, and Decision Systems Engineering has seen a tremendous year. As we move forward, my aim is strengthening our academic and research enterprise by building on the school’s legacy of excellence and innovation. Our achievements over the last year were not possible without the hard work and commitment of our faculty — a cadre of computer science and information experts — who are steadfast in their commitment to making transformative advances in human-technology systems.

In 2017, the school’s junior faculty impressed on the national level by receiving four National Science Foundation CAREER Awards. The NSF-funded research projects of Adam Doupé, Hanghang Tong, Fengbo Ren and Carole-Jean Wu sought to find unknown vulnerabilities in web applications, improve a network’s ability to function during a disturbance, fill unmet energy-efficiency needs with a data-driven internet of things framework and advance handheld device design from the user satisfaction perspective.

Our faculty also made strides in defense, health care and programmable matter with computing. Professor Gail-Joon Ahn became director the ASU Global Security Initiative Center for Cybersecurity and Digital Forensics, which develops tools and technologies to address challenges in cybersecurity. Assistant research professor Troy McDaniel created adaptive assistive computing technology to aid individuals with disabilities, such as people who are blind or have suffered strokes. Professor Andrea Richa helped develop a nature-inspired “amoebot” to explore programmable materials — a smart network of self-organizing particles that can monitor and respond to their environment. These represent just a few examples of the imaginative work that keeps our school at the forefront of information science.

Solving complex challenges, the DHS-funded Center for Accelerating Operational Efficiency improves emergency response and predictive tools for homeland security.

Answering the need for increased federal cybersecurity, the Center for Cybersecurity and Digital Forensics emphasizes cutting-edge research while creating a dependable workforce through scholarships and job placement.

7 NSF CAREER awards, 6 startups and 22 patents in the past three years

Entering the 2018-2019 academic year, U.S. News & World Report ranked computer engineering as 29th, computer science as 43rd and industrial engineering as 17th in the nation.

The combination of our award-winning faculty, interdisciplinary research and nationally recognized undergraduate and graduate programs has attracted top students from across the country. Enrollment in our academic programs has seen substantial growth with 6,215 students enrolling in fall 2017.

We’re also a leader in online education. Our school boasts the first four-year online engineering management program for undergraduates. We also recently launched an online master’s program in computer science, enabling thousands of students around the world access to this rigorous curriculum.

I’m proud of the work we’re doing to extend our reach to underrepresented communities through initiatives like Building, Recruiting, And Inclusion for Diversity, or BRAID — a national partnership of 15 universities across the U.S. helping increase the percentage of women and underrepresented minorities in undergraduate computing programs and subsequently increasing diversity in the computing talent pipeline.

I look forward to continuing the partnership between our faculty, students and staff to pave the way for future innovations in human-aware robotics, big data systems, intelligent manufacturing systems, cyber defense strategies, smart infrastructure and so much more.

I’m energized about the future direction of the School of Computing, Informatics, and Decision Systems Engineering and hope you’ll join me as we continue to push it to the next level.

Sandeep Gupta
Director and Professor
School of Computing, Informatics, and Decision Systems Engineering
### Fall 2017 enrollment

**By degree program**

<table>
<thead>
<tr>
<th>Program</th>
<th>Bachelor's</th>
<th>Master's</th>
<th>Doctoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer engineering (computer systems)</td>
<td>428</td>
<td>129</td>
<td>53</td>
</tr>
<tr>
<td>Computer science</td>
<td>2,180</td>
<td>191</td>
<td>565</td>
</tr>
<tr>
<td>Engineering management</td>
<td>618</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Industrial engineering</td>
<td>380</td>
<td>157</td>
<td>63</td>
</tr>
<tr>
<td>Informatics</td>
<td>116</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Software engineering</td>
<td>1,089</td>
<td>241</td>
<td>--</td>
</tr>
</tbody>
</table>

**Total enrollment**

<table>
<thead>
<tr>
<th>Year</th>
<th>On-ground</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>2,872</td>
<td>92</td>
</tr>
<tr>
<td>2014</td>
<td>4,328</td>
<td>605</td>
</tr>
<tr>
<td>2015</td>
<td>5,097</td>
<td>911</td>
</tr>
<tr>
<td>2016</td>
<td>5,672</td>
<td>1,006</td>
</tr>
<tr>
<td>2017</td>
<td>6,213</td>
<td>1,227</td>
</tr>
</tbody>
</table>

---

**Degrees granted 2016-2017**

**By degree program**

<table>
<thead>
<tr>
<th>Program</th>
<th>Bachelor's</th>
<th>Master's</th>
<th>Doctoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer engineering (computer systems)</td>
<td>71</td>
<td>63</td>
<td>2</td>
</tr>
<tr>
<td>Computer science</td>
<td>311</td>
<td>266</td>
<td>28</td>
</tr>
<tr>
<td>Engineering management</td>
<td>52</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Industrial engineering</td>
<td>82</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td>Informatics</td>
<td>24</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Software engineering</td>
<td>95</td>
<td>99</td>
<td>--</td>
</tr>
</tbody>
</table>

**Total degrees granted**

<table>
<thead>
<tr>
<th>Year</th>
<th>On-ground</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>550</td>
<td>8</td>
</tr>
<tr>
<td>2014</td>
<td>788</td>
<td>13</td>
</tr>
<tr>
<td>2015</td>
<td>951</td>
<td>14</td>
</tr>
<tr>
<td>2016</td>
<td>1,103</td>
<td>1,050</td>
</tr>
<tr>
<td>2017</td>
<td>1,288</td>
<td>1,195</td>
</tr>
</tbody>
</table>

---

**Research**

**Expenditures**

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2013</td>
<td>$11,396,128</td>
</tr>
<tr>
<td>FY2014</td>
<td>$14,177,558</td>
</tr>
<tr>
<td>FY2015</td>
<td>$15,155,092</td>
</tr>
<tr>
<td>FY2016</td>
<td>$15,732,422</td>
</tr>
<tr>
<td>FY2017</td>
<td>$17,212,162</td>
</tr>
</tbody>
</table>

**Awards**

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2013</td>
<td>$15,891,482</td>
</tr>
<tr>
<td>FY2014</td>
<td>$16,383,775</td>
</tr>
<tr>
<td>FY2015</td>
<td>$13,850,454</td>
</tr>
<tr>
<td>FY2016</td>
<td>$13,208,586</td>
</tr>
<tr>
<td>FY2017</td>
<td>$23,254,003</td>
</tr>
</tbody>
</table>

**Proposals (number)**

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2013</td>
<td>$93,927,170</td>
<td>(227)</td>
</tr>
<tr>
<td>FY2014</td>
<td>$106,805,001</td>
<td>(268)</td>
</tr>
<tr>
<td>FY2015</td>
<td>$109,255,809</td>
<td>(295)</td>
</tr>
<tr>
<td>FY2016</td>
<td>$104,013,757</td>
<td>(320)</td>
</tr>
<tr>
<td>FY2017</td>
<td>$219,938,251</td>
<td>(320)</td>
</tr>
</tbody>
</table>
Support
Donations support senior projects, student and faculty research, and improving the educational tools and opportunities we offer our students.

To make a donation of any amount, please call Lauren Bird at 480-727-7538, or mail your gift to:
Ira A. Fulton Schools of Engineering
Attn: Lauren Bird, P.O. Box 879309
Tempe, AZ 85287-9309

Please make checks payable to the "ASU Foundation" with "CIDSE" noted in the memo line.

Stay in touch
Keep up to date on news about Fulton Engineering and CIDSE at our news site, Full Circle fullcircle.asu.edu

Like us on Facebook
(ASU School of Computing, Informatics, and Decision Systems Engineering) to connect with CIDSE students, alumni and faculty. facebook.com/ASU.CIDSE

Contributors
Ili Agnihorti
Marco-Alexis Chaira
Monique Clement
Skip Derra
Mary Beth Faller
Emna Greguska
Erika Gronek
Jessica Hochreiter
Joe Kullman
Haley MacDonell

Leslie Minton
Stephanie Mabee
Scott Seckel
Rose Serago
Amanda Stoneman
Lanelle Strawder
Marshall Terrill
Kelsey Wharton
Erik Wirtanen
Pete Zrinski

Stock images provided by shutterstock.com
In January 2018, Sandeep Gupta was appointed director of Arizona State University’s School of Computing, Informatics, and Decision Systems Engineering — one of the six schools in the Ira A. Fulton Schools of Engineering.
Last spring when Sandeep Gupta was named the director of the School of Computing, Informatics, and Decision Systems Engineering, he was charged with leading the school in its quest to develop and promote world-changing ideas and technologies. Gupta welcomes the challenge.

“Dr. Gupta brings a wealth of knowledge and leadership experience to this role as director,” says Kyle Squires, dean of the Fulton Schools of Engineering. “We’re excited to work with Sandeep to increase the school’s impact and advance on the many opportunities where CIDSE is so well positioned for success. Its students, faculty, academic programs and research enterprise are absolutely essential to the Fulton Schools.”

Gupta joined the university in 2001 as a tenured associate professor, soon progressing to full professor. He earned a reputation as a respected teacher and accomplished researcher. Gupta has also excelled in administrative capacities. In 2016, he was named interim director for the school.

During that time, Gupta played an instrumental role in establishing multidisciplinary centers to enhance the school’s research through government and industry partnerships. He provided institutional support for the development of the Department of Homeland Security’s Center for Accelerating Operational Efficiency. And he secured vital resources and help develop the framework for the Center for Assured and Scalable Data Engineering to take on large projects and initiatives that directly impact the energy, health, security and finance industries.

Under Gupta’s leadership, the school has sustained high-quality education in the face of its tremendous growth and has also attracted some of the nation’s brightest faculty members — both factors contributing to the school’s rise in the U.S. rankings among computer science programs.

Gupta is excited to make his mark on the school’s upward trajectory.

“It is truly an honor to be selected as the director of the School Computing, Informatics and Decision Systems Engineering,” says Gupta. “It’s an incredible opportunity to not only work with such an inspiring group of faculty and students but to continue to build relationships with communities and entities beyond academia that spur innovation and growth worldwide. I am thoroughly optimistic about the future of CIDSE.”

Gupta’s promise at guiding the school into the future is largely informed by his long history of research excellence and collaboration. He has spent his career conducting high-quality, transdisciplinary, use-inspired research with the potential for lasting change. With a focus on artificial intelligence, human-robot interaction, cybersecurity, IoT, smart transportation, autonomous vehicles and pervasive health care monitoring, Gupta’s vast research profile uniquely qualifies him to lead a school with such an extensive range of specialties.

Recurring themes throughout Gupta’s research have been sustainability and energy savings. His work on a two-tier thermal-aware computing and cooling management architecture to maximize renewable energy received a U.S. patent.

In the health care field, his contributions have included combining advanced sensors with wireless communication to monitor vital body functions and co-authoring a book introducing theoretical and practical techniques for biomedical sensor networking. Gupta is also the founding editor of the journal Smart Health, which focuses on devices, sensing, computing and communication technologies, software/hardware modeling and system architectures for pervasive health care. A pioneer in mobile computing, Gupta also co-authored the first mobile computing textbook.

As he settles into the role of school director, Gupta is working to reduce class size, hire additional lecturers, boost admission standards and match student aptitude with the school’s programmatic goals — all in an effort to contribute to ASU’s tradition of academic excellence and quality.

Each day, Gupta is charging ahead to fulfill his vision to lead the Fulton Schools of Engineering’s largest and fastest growing school to become one of the foremost proving grounds for innovation, entrepreneurship and collaboration in computing, informatics, industrial engineering, artificial intelligence, robotics and so much more.
Nowadays, when people want to buy something over the internet, they will type in their credit card information, name and address without giving it a second thought. In fact, a single vulnerability in a web application can allow an attacker to steal that personal information.

When Adam Doupé worked as a penetration tester for web applications, he realized he was building a mental model of how the web application worked and then trying to understand how the code was written in order to find vulnerabilities.

Doupé wondered if an automated tool could do the same thing. And that idea has earned the assistant professor an NSF CAREER Award to address the growing need for secure data solutions.

His research will focus on using inductive programming, a branch of machine learning, to interact with a web application and reverse engineer the source code and then identify vulnerabilities before an attacker can exploit them.
Consumers are always looking for better performance and better battery life in smartphones and likely won’t take one without the other. But for billions of smartphone users, performance is the biggest contributor of user satisfaction. And the phones can’t get too hot.

Carole-Jean Wu is harnessing both user satisfaction and low heat tolerance as a jumping off point for an NSF CAREER Award to better optimize mobile computing performance. Wu, an assistant professor, is exploring solutions previously thought unusable by measuring performance quality through the lens of perceived application execution time. Another consideration is the particular “bursty” usage pattern common only to smartphones.

She and her team are taking a holistic approach to finding new methods to concurrently manage computation power, temperature profiles and runtime behavior for a better overall mobile experience as well as shed light on the design for a wide range of computing devices.

Faculty spotlight.

NSF CAREER Award winner
People’s daily lives depend on various networks — from the electric grid and transportation systems to online social connections — running reliably.

At their most basic level, networks are a collection of nodes and links between those nodes. Using road systems as an example, a node would be an intersection and a link would be the roads connecting those intersections. Simple enough in a small town, but from the national perspective, this network is complicated with many opportunities for disruption.

With support from an NSF CAREER Award, Hanghang Tong seeks to create effective strategies and algorithms to ensure network robustness. Designing a unified suite of algorithms also means ensuring they’re scalable, adaptable and optimized for a wide variety of networks and robustification challenges.

The assistant professor will verify the algorithm suite works with real-world applications in an intelligent transportation system and an online social collaboration. ✪
The internet of things could very well be the next big and transformative shift in technology, forever changing how people interact with the world. Though the thought of connecting everything represents exciting new possibilities, there are significant challenges to deploying such devices at scale — too much data to handle and not enough power to transmit it.

Armed with an NSF CAREER Award, assistant professor Fengbo Ren seeks to create a practical and effective solution using data-driven compressive sensing. This new model’s key idea is to use the sensor data to autonomously characterize signal models and capture individual variability. That knowledge informs compressive sensing, information decoding and even decision-making. The data-driven nature of the work makes the framework universal for all internet of things signals.

Ren is working with actual application scenarios and hardware constraints in mind to bring this solution into real-world applications.
Associate professor Ross Maciejewski combines his curious mind and computer skills to create a new way of seeing the world through geographical visualization and visual analytics. As principal investigator, Maciejewski leads a five-year, $3 million award project as part of the NSF Innovations at the Nexus of Food, Energy and Water Systems program. The team of researchers are building decision support tools that look at the interdependence of these systems and helping develop sustainable policies for the future.

Maciejewski is also working with ASU’s Foresight Initiative, which received $20 million from the National Geospatial-Intelligence Agency to anticipate and mitigate national security risks associated with climate change, such as shortages of water, food and energy, and how they could contribute to political unrest.
An expert in computer vision and machine learning, Professor Baoxin Li puts people at the core of his research. He focuses on human-centered computing to improve lives profoundly.

As part of a project funded by the Minerva Research Initiative to address areas of importance to national security, Li will help study information cascades as they relate to the social-media posts of terrorist networks.

After working with a coworker who is blind, Li created tactile photographs. These computer-generated, two-dimensional images enable people with visual impairments to identify individuals by their facial contours. Now, he’s considering other applications to make it easier for people with visual impairments to navigate places such as shopping centers.

Li also serves as a mentor for the NSF Integrative Graduate Education and Research Traineeship program to help train the next generation of experts devoted to helping people with disabilities.
New faculty

Our faculty build upon our school’s legacy of excellence and innovation

This past year, we hired seven new faculty to add capacity and expertise in the areas of artificial intelligence and cybersecurity. These dynamic new faculty are joining a cadre of computer science and information experts who are contributing to discoveries of foundational value. The school’s new faculty has a strong record of winning multiple prestigious early career awards, including seven NSF CAREER Awards in the last three years (2016-2018). We’re confident our new faculty will continue this tradition by driving innovations in human technology systems while strengthening our key research areas and sustaining our quality of education.

Ajay Bansal  
Assistant Professor  
PhD, The University of Texas at Dallas  
Logic programming; constraint programming; answer set programming; data mining; machine learning; semantic computing; service-oriented architecture.

Stephanie Forrest  
Professor and Director of the Biodesign Center for Biocomputation, Security and Society  
PhD, University of Michigan  
Biology of computation and computation in biology, including biological modeling of immunological processes and evolutionary diseases, cybersecurity, software engineering, evolutionary computation.

Stephanie Gil  
Assistant Professor  
PhD, Massachusetts Institute of Technology  
Coordination and control of multi-robot systems with communication problems emphasis, communication-aware controllers.

Yan Shoshitaishvili  
Assistant Professor  
PhD, University of California, Santa Barbara  
Advancing the field of binary analysis with a focus on embedded firmware; web security; privacy; computer security education.

Siddharth Srivastava  
Assistant Professor  
PhD, University of Massachusetts at Amherst  
Sequential decision making under uncertainty, integrated task and motion planning for robots, mobile manipulation, generalized planning, knowledge representation, probabilistic programming, probabilistic inference and machine learning.

Hao Yan  
Assistant Professor  
PhD, Georgia Institute of Technology  
Real-time modeling and analysis with large-scale, high-dimensional data; data fusion for modeling of complex systems; smart adaptive sampling strategy and data reconstruction.

Tyler Baron  
Lecturer  
Computer science

Robert Reimar Heinrichs  
Lecturer  
Software engineering

Joseph Juarez  
Lecturer  
Industrial engineering
<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Awards/Recognitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron Askin</td>
<td>IISE Albert G. Holzman Distinguished Educator Award</td>
</tr>
<tr>
<td>Ross Maciejewski</td>
<td>NSF INFEWS Award; Fulton Exemplar Faculty</td>
</tr>
<tr>
<td>Nadya Bliss</td>
<td>Member of Computing Community Consortium Council</td>
</tr>
<tr>
<td>Dan McCarville</td>
<td>A. Alan B. Pritsker Outstanding Industrial Engineering Teacher Award</td>
</tr>
<tr>
<td>Shayok Chakraborty</td>
<td>2017 IEEE MultiMedia Best Department Article Award</td>
</tr>
<tr>
<td>Phill Miller</td>
<td>Top 5% Teaching Award</td>
</tr>
<tr>
<td>Linda Chattin</td>
<td>Top 5% Teaching Award</td>
</tr>
<tr>
<td>Sethuraman Panchanathan</td>
<td>IEEE Phoenix Section Outstanding Leadership and Professional Service Award; 2017 IEEE MultiMedia Best Department Article Award; 2017 Alumnus of the Year Award, University of Ottawa; 2017 Distinguished Alumnus Award, Indian Institute of Technology, Madras, India; 2016 Best Demo Award, 24th ACM International Conference on Multimedia</td>
</tr>
<tr>
<td>Erin Walker</td>
<td>Top 5% Teaching Award</td>
</tr>
<tr>
<td>Carole-Jean Wu</td>
<td>IEEE NSF CAREER Award; Young Engineer of the Year</td>
</tr>
<tr>
<td>Teresa Wu</td>
<td>2017 Best Senior Researcher</td>
</tr>
<tr>
<td>Guoliang Xue</td>
<td>Top 5% Teaching Award</td>
</tr>
<tr>
<td>Adam Doupé</td>
<td>Engineering Teaching Excellence Award; NSF CAREER Award</td>
</tr>
<tr>
<td>Baoxin Li</td>
<td>Fulton Exemplar Faculty</td>
</tr>
<tr>
<td>Jing Li</td>
<td>2017 Mayo Clinic and ASU Alliance for Health Care Summer Residency Program</td>
</tr>
<tr>
<td>Fengbo Ren</td>
<td>Top 5% Teaching Award; NSF CAREER Award</td>
</tr>
<tr>
<td>Andrea Richa</td>
<td>2017 Best Senior Researcher</td>
</tr>
<tr>
<td>Subbarao Kambhampati</td>
<td>President, Association for the Advancement of Artificial Intelligence</td>
</tr>
<tr>
<td>Dan Shunk</td>
<td>Top 5% Teaching Award</td>
</tr>
</tbody>
</table>
Chokepoints and censorship: Protecting the free flow of information on the internet

The internet is a network of networks, and each network has a physical location through which traffic travels on physical lines to get to its destination.

Any network node that internet traffic passes through when it enters or exits a country’s internal networks is called a chokepoint.

The number of potential network chokepoints in a country reflects how easily a government could tamper with internet traffic either for cybersecurity or for repressing the freedom of communication for a country’s citizens.

Stephanie Forrest, computer science doctoral student Kirtus Leyba and her ASU research team are working with University of New Mexico Professor Jedidiah R. Crandall and University of California, Riverside Professor Michalis Faloutsos to develop tools and models to determine the topography of the global internet and countries’ chokepoint potential.

In a $1.4 million National Science Foundation-funded project led by Crandall to measure internet chokepoints, Forrest is helping policymakers, cybersecurity researchers and free speech advocates address issues related to internet freedom and security by providing accurate data and analyses of chokepoints.

We lack a worldwide view of how the internet’s network structure is changing over time, especially in ways that enable censorship and surveillance.

For certain network nodes, data known as routing tables are publicly available, showing how certain nodes talk to certain other nodes. With enough such data and by using simulation methods, researchers can infer a wider structure of how internet traffic is routed. But there are gaps in our understanding.

Crandall, the NSF project’s principal investigator, is developing side channel methods for inferring which IP addresses can talk to certain other IP addresses when data about the nodes is not publicly available.

“No one else has collected data at this scale,” Forrest says. “China isn’t necessarily going to let us install programs to measure traffic and connectivity, so how do you measure what’s going on inside of China [and other places] where information is being censored? It’s quite a technical trick to figure out a good method that will let you understand what’s going on inside the country from the outside.”

Once Forrest’s team has data to fill in a more complete map of network nodes, they need the tools to map out international network structures and potential chokepoints.

“There’s an additional step of simulating where internet traffic will actually go [through the possible paths of network nodes], and we’ve created a large (1 terabyte) data set to enable this simulation. We use this dataset to quantify the chokepoint potential of any country,” says Forrest, who is also director of the ASU Biodesign Center for Biocomputing, Security and Society.

Forrest’s role in the project is to model and simulate the data to determine trends and to present data in ways that make it useful for non-computer scientists. She has studied the past decade’s shifting potential for chokepoints among countries with more and less “free” internet network architectures to those that are more restrictive, ranging from the United States, France, Germany and the United Kingdom to China, Turkey, Egypt and Russia.

Seeing the chokepoint potential trends over time can provide clues for how countries may be implementing censorship, or how information is being intercepted and where.

These models can potentially help policymakers make better decisions and help them understand trends in particular countries. When she spent a year working on cyberpolicy at the U.S. Department of State, Forrest says that studies like these would have been invaluable in preparing for international negotiations related to cyberpolicy.

Forrest’s team will make their data sets and analysis tools publicly available for anyone to use.
Stephanie Forrest, a computer science professor who holds a joint appointment with the ASU Biodesign Institute, studies the potential of censorship and surveillance as internet traffic crosses national borders. Photographer: Erika Gronek/ASU
Software scrapes big data for big danger

Hasan Davulcu and Carolyn Forbes, assistant director of the Center for the Study of Religion and Conflict, have teamed up to find radical messages — both violent and positive — in an effort to counter violent extremism.

Initiated as a Department of Defense project, Looking Glass is the product of computer scientists, historians, anthropologists, Islamic studies scholars, sociologists and political scientists. It earned its name because it provides a visual lens into a group’s thinking. Currently, ASU is partnering with a private international development company called Chemonics to test the tool in Libya. Looking Glass identifies pro-social groups and positive social messages aimed at achieving Libyan unity, prosperity, security, cohesion and justice in order to support them and their goals of positive social change.

Solving the unsolvable problem

Nadya Bliss, the director of ASU Global Security Initiative and professor of practice in the Fulton Schools, talks applying innovation to the world’s toughest security challenges in an ASU KEDtalk.

Watch the video: scan the QR code or visit links.asu.edu/globalsecurityinitiative

Person first, software second

When software updates, usually you have to adapt to it.

But a team of researchers at ASU are creating adaptive assistive computing technology that makes the software adjust to you.

Assistant research professor Troy McDaniel is part of a research team focused on applying the new model to social assistive aids for individuals who are blind and rehabilitative technologies for individuals who have suffered strokes.

“It’s a paradigm that proposes ideal technological designs as individualized designs: technology that adapts to its users over time through continual use,” McDaniel says, adding that no two individuals or disabilities are the same, so individualized designs are necessary.

One application of the new paradigm is the Social Interaction Assistant, an assistive device that allows individuals who are blind access to nonverbal social cues, such as facial expressions. A body-worn or tabletop webcam would use machine learning and computer vision algorithms to recognize nonverbal cues and haptic, touch-based delivery devices for discreet, personal communication of those cues.

Led by executive vice president of ASU Knowledge Enterprise Development Sethuraman Panchanathan, McDaniel, Assistant Professor Shayok Chakraborty of Florida State University (formerly an assistant research professor at ASU), and postdoctoral research associate Ramin Tadayon, this work was published in an award-winning article titled, “Person-centered multimedia computing: a new paradigm inspired by assistive and rehabilitative applications.”

The paper, awarded the 2017 IEEE MultiMedia Best Department Article Award, introduced two applications within a new paradigm developed by Panchanathan, the director of the Center for Cognitive Ubiquitous Computing, called “person-centered multimedia computing.”
ASU is one of only a few universities selected by the Department of Homeland Security to develop advanced tools for the nation’s security organizations.

DHS turned to CIDSE faculty for help improving operations in agencies including the TSA, U.S. Coast Guard, Federal Emergency Management Agency and Customs and Border Protection.

“That DHS chose ASU for this Center of Excellence speaks to ASU’s commitment to impactful, use-inspired research," says Ross Maciejewski, who will serve as the center’s director. “We will develop new research and translate existing research into useful tools, such as data analytics, economic analysis or operations management systems that DHS organizations can put in place for improved decision-making and effectiveness.”

Some of the questions the center will explore include how to make TSA pre-screening more effective and how to develop tools to assess, mitigate and plan for threats, said Pitu Mirchandani, who will serve as the center’s chief scientist.

The new DHS Center of Excellence will be housed jointly in ASU’s Ira A. Fulton Schools of Engineering and Global Security Initiative. The new center brings $20 million in research funding to ASU in the first five years of the grant, with the potential to extend for another five years.

ASU’s strength in security research comes, in part, from the interdisciplinary nature of research teams involved in security-focused projects across campus.

The DHS center also will provide opportunities for students interested in careers focused on homeland security to conduct research and complete internships, giving ASU an opportunity to broaden its work in preparing the next generation of security practitioners.

“Cybersecurity is better together

ASU Global Security Initiative’s Center for Cybersecurity and Digital Forensics recently partnered with Allstate Insurance to address digital security challenges by advancing cybersecurity research, education and entrepreneurship.

Gail-Joon Ahn, a professor of computer science and engineering, is director of the CDF where he and his interdisciplinary research team develop tools and technologies that address high-impact challenges in cybersecurity. “In addition to managing sensitive and valuable data, Allstate is also arming itself against potential risks that might accompany emerging cyber-related technologies, including smart vehicles and home automation,” Ahn says. “Allstate’s partnership with the CDF will help identify and understand potential risks to help the insurance company continue to provide excellent service and fulfill its business goals.”

Ahn’s center also partnered with Samsung Electronics. “I strongly believe ASU-Samsung partnership would help articulate such critical research challenges collaboratively while tremendously expanding educational opportunities in cybersecurity and training ASU students with the advanced knowledge and resources,” Ahn says.

As part of the partnership, the founding, platinum-level member companies will each pledge $1.5 million over three years to support scholarships, student fellowships and competitions in the field of cybersecurity and digital forensics. Allstate Insurance and Samsung Electronics will also receive assistance in sourcing ASU students for internships and opportunities to partake in CDF-sponsored events.

Through partnerships, the center aims to form relationships with industry, university and government entities that will play a critical role in producing a skilled workforce in the area of national security, thereby contributing to economic growth.
Defense against the darkweb

Paulo Shakarian, a Fulton Entrepreneurial Professor, is an expert on the hacker community and the activities in the dark web and deepnet.

Shakarian is also director of the Cyber-Socio Intelligent Systems Laboratory that researches malicious hackers and analyzes their distinct culture. With that knowledge and a team of cybersecurity experts, they’re taking a new approach that allows them to detect a threat from hackers before it can do any damage.

Darknet = computer networks with restricted access

Deepnet = websites not indexed by search engines

Using a machine learning system, Shakarian and his team are able to monitor both darknet and deepnet websites for traffic related to potential hacks, giving software developers a heads-up so they know what they need to protect against. The system is currently able to monitor roughly 120 sites at once. It’s the first technology to be able to do so at such a scale, and as Shakarian reported, to allow for the identification of hackers “who have a presence on multiple sites” and “products that are duplicated on multiple sites.”

“The information we’re getting is much, much richer,” he says. “And we think that’s really the key to solving this problem. You can’t just pick one hacker site [to monitor] at random when there are so many out there. You have to have a more comprehensive view.”

Their approach works by crawling both hacker marketplaces and forums for exploit-related content, then parsing out that which is related specifically to hacking threats.

The machine learning system approach allows them to filter out that content by doing exactly what it sounds like: It learns which content to look for. It does so through a small bit of initial human content tagging. From there, the system continues its search automatically in the future.

This system’s technology is licensed to IntelliSprye Incorporated, a spinout company led by Shakarian. Another effort sponsored by ASU is combining game theory and data mining to aid in the defense against cyber attackers who leverage zero-day exploits and will bridge his research efforts in both cybersecurity and social networks.

Gearing up to handle “big data”

Shakarian’s social network research is supported by three Department of Defense grants to study social influence, the inhibition of information cascades and cyber-attribution. He also received a Defense University Research Instrumentation Program to replace inefficient equipment with new workstations.

“The main bottleneck we had was that we wanted to do more analysis on ‘big data’ by loading all of the datasets into memory,” Shakarian says. “For instance, we do work on social influence and want to study the retweet history of millions of tweets — this works much better if we can keep all the data in memory instead of accessing the hard disk, which is a much slower operation.”

Paulo Shakarian recently shared his expertise at a panel led by Estrella Mountain Community College and the Southwest Valley Chamber of Commerce to help advise local businesses in ways to stay secure in an increasingly digital marketplace — an important activity when software companies disclose approximately 15,000 vulnerabilities every year.

Along with other speakers and experts from ASU, the private sector and government, Shakarian advised awareness of the environment, as well as a good plan, are the keys to success in cybersecurity.
Stephanie Forrest, a professor and director of the ASU Biodesign Institute Center for Biocomputing, Security and Society, has more than 20 years of experience leading interdisciplinary research at the intersection of biology and computation, including work on computer security.

“She says computer scientists can learn from human immune systems and biological evolution to enhance computer security. “Looking at how biological systems have learned to protect themselves can suggest novel approaches to security problems,” Forest says. “One of the easiest places to see this is in the immune system, which plays a major role in protecting individual organisms from foreign viruses and bacteria. What I try to do is look at biological mechanisms and principles and translate those mechanisms and architectures into computational algorithms that protect computers.”

By 2022, the world may see a cybersecurity workforce gap of nearly two million jobs.

Students interested in filling that gap can enroll in a new NSF Scholarship for Service program at ASU focused on cybersecurity.

The NSF CyberCorps program will accommodate students interested in earning undergraduate or graduate degrees, and all students who enroll will be involved in cybersecurity research.

“Students who enroll can focus on many different areas that influence and build upon cybersecurity, including artificial intelligence, machine learning, networking, embedded devices, and more,” says Adam Doupé, assistant professor and associate director of the Center for Cybersecurity and Digital Forensics.

“Routing robocalls

Tired of getting robocalls and robo-voicemail? Adam Doupé is too.

One root of the problem is that caller ID can be easily and inexpensively spoofed, which can trick you into thinking you’ve been called by a legitimate business.

“No one checks the validity of the caller ID field,” Doupé says. “As part of my team’s research, we looked into what tools and techniques have been tried to prevent robocalls and scams, and none have been successful.”

Doupé and his research team have filed for a patent on a technology that shows a security indicator, like the green lock you see in your browser’s address bar, to show if a caller is legitimate and to build trust in the caller ID phone number.

“If you’re on Google or Facebook, you’ll see the lock and know that you’re talking to the real website. It’s a visual indication that your communications are secure,” Doupé says. “In my lab’s work, we’re creating a similar mechanism for phone calls to build a level of trust in the caller ID phone number.”

The team is also working with the International Telecommunication Union, a global telecom standardization body, to have this technology standardized.

“You cannot practice defense unless you have a good understanding of offense.”

— Adam Doupé at the first Arizona State University Congressional Conference on Cybersecurity that brought together members of Congress, one senator and representatives from academia, business and the military to debate cybersecurity challenges.
Artificial intelligence and robotics

An ASU student team set out to Moscow to put their skills to the test at VisionHack, the first hackathon for computer vision for autonomous vehicles.

Teams taught a computer to identify six different obstacles: a bridge, a tunnel, windshield wipers, crosswalks, speed bumps and road signs denoting city exits and entrances. The ASU students impressed the judges, earning first place for Best Presentation, Most Original Approach and, fittingly, Most Innovative.

ASU’s team consisted of electrical and computer engineering graduate student Sami Mian, computer science graduate student Daniel D’Souza, software engineering graduate student Alexander Lampis Slaughter and computer science undergraduate students Abhik Chowdhury and Ashley Megumi Satkowski. Jared Schoepf, Fulton Schools alumnus and director of the Engineering Projects in Community Service program, accompanied the team as their faculty mentor.

The key to ASU’s approach was their prioritization, according to Mian. “We had six different types of obstacles to account for, so we looked at the problem overall and tried to determine which obstacles, if any, would overlap,” says Mian. “We then prioritized the challenges based on what we thought was most critical — that being the crosswalk.”

Computer vision in Moscow

It shoots, it scores!

New machine learning algorithm teaches robot to shoot hoops in less than three hours.

Heni Ben Amor, an assistant professor of computer science, is using machine learning to get a robot to learn to shoot hoops faster than ever before and to accelerate teaching robots to complete a variety of tasks.

While many robots can take anywhere from two to three days to learn how to execute a given task, Ben Amor created an algorithm that allowed his basketball-throwing robot to learn how to sink a shot in a matter of hours.

His algorithm avoids many drawbacks that currently plague machine learning. Imitating a human has drawbacks due to different anatomy and capabilities, and reinforcement learning can take thousands or millions of hours to learn a task.

Ben Amor’s algorithm, called “sparse latent space policy search,” enables a robot to first understand the coordination between its different joints, parts and movements. Through this, the robot gradually eliminates unsuccessful solutions to arrive at a successful one.

Throwing a basketball also addresses the issue of learning dynamic movement. Often, robots will break a task down into a series of movements: Pick up an object. Rotate the object. Move it five feet to the right. Lower the object toward a receptacle. Release the object. Throwing a basketball cannot be accomplished in starts and stops — it requires a burst of dynamic motion, an elusive feat for many learning robots.

“It requires a robot to dynamically apply force at the right time, straying away from the ‘divide and conquer’ approach common in computer science and machine learning,” says Ben Amor.

It’s inefficient to program each individual movement, accounting for different situations and variables. With Ben Amor’s approach, he can change the ball’s weight or hoop’s height and the robot will make necessary adjustments on its own in three hours or less — no reprogramming necessary.

In an industrial situation, learning can be an invaluable asset in a robot. Rather than requiring a team to completely reprogram the robot every time the product changes on an assembly line, a process that can take days or longer, the robot can make the adjustment itself with just a few hours of learning.

Ultimately Ben Amor wants to create robots capable of machine learning that can quickly adapt to complement their human partners.
Human-robot connection

A project designed to "bridge the communication gap" between humans and robots was a finalist in the U.S. Finals of the 2017 Microsoft Imagine Cup, the international student competition that’s considered the “Olympics of Technology.”

Effective Robotics, composed of computer science doctoral students Tathagata Chakraborti, Anagha Kulkarni and Sarath Sreedharan and mentored by Subbarao Kambhampati, a professor of computer science and engineering and director of the Yocan Research Group, presented a concept — along with software — for the operations of a “factory of the future,” in which robots and humans would be connected through a networking system enabling them to effectively “share a brain.”

The humans and robots share technology that provides platforms for a “mutually understood vocabulary” and for “intention recognition and projection,” allowing everyone and everything connected to the network to anticipate each other’s physical movements and high-level goals, and to comprehend the intentions and motivations behind those movements. It’s all achieved through what team members describe as a Consciousness Cloud that would give the robots working in the factory “real-time shared access to the mental state of all humans in the workplace.” This setup allows people to infer robots’ actions through holographic projects and communicate their own intentions to factory robots.

Ashraf Gaffar, an assistant professor of computer science, is developing an AI system that will augment autonomous cars to make driving safer. The system will learn how you drive, then learn on its own and intervene when needed in an intelligent way.

“It will come preloaded with what is good driving and what is not,” he says. “Then the first few weeks it will learn your style of driving and adjust to it. Then it will be able to detect any anomalies and analyze them.”

If you start showing fatigue or suddenly are unable to drive, the car will intervene.

“You can see it as having your mom next to you,” Gaffar says.

Subbarao Kambhampati and other AI experts gathered at the Computer History Museum to discuss human-machine collaboration and how it affects the way AI tools are designed and developed.
Andrea Richa, a professor of computer science, is helping develop a nature-inspired “amoebot” to explore programmable materials — a smart network of self-organizing particles that can monitor and respond to their environment.

Her role in a collaboration with colleagues at the Georgia Institute of Technology and the University of Paderborn in Germany is to develop the computer science theory and distributed algorithms necessary to explore and broaden the possibilities of using programmable matter.

Distributed algorithms run concurrently on several independent, interconnected computational devices that cooperate via local interactions, without centralized control.

In using programmable matter, she says, “It’s important that the distributed system is able to self-organize, so that it does not require any central control or human intervention, and that it achieves the desired behavior by means of local interactions of the computationally limited sensors.”

She and her research group developed a theory for a system of self-organizing particles that can perform universal coating and compression — meaning the particle layer is even and tightly gathered — with only local communication and limited information about the environment. For example, the particles are able to perform these processes without having to rely on a global coordinate system, or any global orientation that they all share.

The findings were based on work with the University of Paderborn to develop a framework to describe programmable matter systems, which they call the “amoebot model” based on its amoeba-like movement.

Using the model, Richa and her associates addressed the problem of coating surfaces of any shape through their universal coating algorithm for programmable material that “is indifferent to the shape or size of the surface that it must coat,” she says.

Through collaborations with Georgia Tech Professor Dana Randall and doctoral student Sarah Cannon, Richa’s group collaborated with Georgia Tech to construct and analyze a new compression algorithm that enables system behavior similar to that of ants and other insects when they swarm to collectively carry out tasks.

Improved compression would likely help tiny particulate sensors not only perform better at gathering information but also improve their communication with each other, enabling them to work faster in some cases.

Srija Chakraborty, a computer engineering doctoral student, researched satellite data analysis at a summer program at the NASA Jet Propulsion Laboratory Center for Climate Sciences hosted by Keck Institute for Space Studies, Caltech and JPL.

Chakraborty’s research interest lies in developing improved machine learning and signal processing algorithms for remote-sensing data analysis.

“Right now, we have more data than what we can understand or forecast correctly, and I would like to study ways to analyze and handle such data from satellites in an integrated manner,” Chakraborty says. “As of now, we do not have a high variety and volume of data from other planets in our solar system as well as exoplanets. I hope that future missions would fill in this data void, and I hope to contribute to the analysis and understanding of such environments for supporting deep space missions.”

Chakraborty conducts her research in the IMPACT Lab (short for Intelligent, Mobile, Pervasive, Autonomous, Computing and Communication Technologies), which is directed by her doctoral studies supervisor, Professor Sandeep Gupta, director of CIDSE.
A student team led by faculty member Yinong Chen won the Intel Cup in China programmable robot project.

Chen’s four students set out to create an alternate programming environment for the robotics concentration of CIDSE’s introductory class, FSE 100.

The team created a drag-and-drop visual programming language called VIPLE — Visual IoT/Robotics Programming Language Environment — and also built a custom robot hardware kit for students to use. The robot is made of custom-designed parts, Intel boards and middleware software they created themselves.

“Our goal with VIPLE is to provide a language we can use to teach introductory-level students computational thinking such as providing a focus on algorithms or higher level programming concepts without having to focus on the detailed syntax,” says Gennaro De Luca, a computer science student. “We also developed the middleware that a user could install on an Intel board and be able to easily communicate with VIPLE and program that robot.”

De Luca led the software team and developed the VIPLE software. Sami Mian, a computer systems engineering student, was in charge of the hardware and designed the robots and all of the custom parts for the project. John Robertson, an electrical engineering and computer science student, was in charge of the middleware that helped bring the other two teams together. Tara De Vries, a computer science student, worked on the software team.

ASU won a second prize in 2012 and now has first prizes in each of the past two competitions in 2014 and 2016.

The turtle-like shell and flippers were no accident on a robot developed by a team of Fulton Schools researchers.

C-Turtle was intentionally designed with inspiration from biology in mind.

C-Turtle, which moves in sandy environments, took one hour of learning to walk in the sand in a desert test. The biology-inspired, curved design worked better than squared edges, demonstrating how biology can short-cut problems in robotics.

“If we use tricks from nature, it learns much faster,” Heni Ben Amor, an assistant professor with AI expertise, says. “You can use that initial inspiration from nature to get things going.”

Ben Amor and his team worked on the machine learning aspects of C-Turtle. He collaborated with faculty members and students from different backgrounds: computer science, mechanical engineering and biology.

Ben Amor teamed up with Daniel Aukes, an assistant professor of engineering in the Polytechnic School whose background is in designing, fabricating and building robots, to manufacture the turtle-inspired robot.

The theme was cyberphysical systems and their applications, one of the major thrusts of Lamrani’s research pursuits.

Workshops and demonstrations covered an array of endeavors in computing systems, information technologies, image and signal processing, control systems, cybersecurity and human-robot interaction, as well as “smart” systems, including “smart home” technologies.

Lamrani conducts her research in the IMPACT Lab (short for Intelligent, Mobile, Pervasive, Autonomous, Computing and Communication Technologies), which is directed by her doctoral studies supervisor, Professor Sandeep Gupta, director of CIDSE.
Improving energy efficiency and cybersecurity in manufacturing

Rene Villalobos, an associate professor of industrial engineering, leads one of 28 Industrial Assessment Centers funded by the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

The DOE awarded ASU $1.5 million in 2016 for the five-year project with $35 million in total funding that seeks to help make the U.S. manufacturing industry more energy-efficient, productive and secure.

IACs make site-specific recommendations to improve efficiency while providing undergraduate and graduate students the opportunity for first-hand exposure to industry manufacturing processes, energy assessment procedures and energy management systems. IAC assessment teams of faculty and students take measurements, come up with improvement ideas and calculate cost savings. The hands-on experience helps students learn what really matters to industry and leads to better-qualified graduates, which the DOE says the U.S. lacks.

The ASU IAC conducts free assessments for small manufacturers with fewer than 500 employees, gross annual sales below $100 million and energy bills between $100,000 and $2.5 million per year in Arizona, southern Nevada/Las Vegas and western New Mexico.

As an independent and experienced third party, ASU provides unbiased assessments on energy efficiency plant managers can use to justify capital expenditures. The ASU IAC also provides analysis of a manufacturer’s cybersecurity strengths and weaknesses and recommends security measures to protect against cyber attacks.

The ASU team also partners with local organizations — Arizona Commerce Authority business improvement and training organization ReVAZ, sustainability and efficiency evaluator Lincus Inc. and industrial consulting organization Nevada Industry Excellence — to identify potential clients and works with power companies to identify energy efficiency improvement opportunities.

Life-changing research before college

The Center for Cognitive Ubiquitous Computing, or CUbIC, provides research opportunities for ASU students as well as high schoolers looking to get a jump start on conducting research.

As a senior at BASIS Scottsdale, Shreya Venkatesh took full advantage of the opportunity to work with a CUbIC research team — and won several awards in the process.

Under the mentorship of Troy McDaniel, an assistant research professor, and Arash Tadayon, a computer science doctoral student, she helped create a wearable device to help individuals with Parkinson’s Disease manage a common symptom known as Freezing of Gait, or the sudden inability to continue their walking stride.

Auditory and visual cues have been previously used to guide the user to take longer steps, but the CUbIC team’s approach explores the field of haptics, specifically sensory vibrations as a feedback tool.

“Using something artificial like technology to influence something as natural as human illness is fascinating,” says Venkatesh, who has enjoyed seeing up close the way technology can be employed to help improve human health.

Venkatesh received a Young Scientist of Arizona Award from Phoenix Comic Fest at the Arizona Science and Engineering Fair — a state-wide science fair competition — for her research in the Freezing of Gait events. Two months later, she was invited to present a talk on this research area at a Phoenix Comic Fest panel. She also earned an Outstanding Young Female Scientist in Systems Software award from the Association for Women in Science at AzSEF.

Students

Computer science major Jiaqi Wu and computer systems engineering majors Farah Al Yasari, Diana Chen and Derek Fermaint spent more than 24 hours hacking together an innovative solution to the 2016 HackMIT competition’s software and hardware challenges. Their apps included an organization app for student organization leaders and a wearable internet of things app for students pulling all-nighters.
As the Fulton Schools computer science program grew, Associate Professor Dijiang Huang needed a way to grow his laboratory space for students taking computer networking and cybersecurity courses.

Instead of keeping a physical lab space equipped, maintained and scheduled, Huang began creating a cloud-based virtual lab, where the physical computers and network connections could be emulated on a server to form any computer network configuration needed.

Huang’s virtual lab was a success with his own students, which encouraged him to think about commercializing his platform to benefit a wider range of instructors and students.

Out of these efforts came the startup Athena Network Solutions, LLC and its product, ThoTh Lab. ThoTh Lab is a browser-based virtual lab environment where instructors can create customized lab configurations in the cloud for personalized and collaborative learning, while saving the cost and time associated with setup and maintenance of physical labs. Students get hands-on experience with computing resources that closely resemble real-world systems, which translates to better problem-solving skill development that will make them competitive in today’s job market. ThoTh’s hands-on lab service tools also allow instructors to more easily manage courses and track student progress and performance.

Fulton Entrepreneurial Professor Paulo Shakarian’s IntelliSpyre company was one of only six finalists selected from among more than 5,500 business startups from more than 150 countries that entered the Cisco Innovation Grand Challenge in 2016. The competition is aimed at finding three of the most worthy ventures led by digital technology “trailblazers” for the Cisco company to reward with funding and other startup support.

IntelliSpyre is a cybersecurity startup focused on identifying cyber threats from malicious hackers in the earliest stages. It leverages cutting-edge technology to help businesses ramp up their cybersecurity systems.

The company utilizes both human analysts and advanced machine learning capabilities to search portions of the internet — including the aptly named “darknet” — where malicious hackers organize, plan, purchase malware, sell exploits and conduct other activities prior to conducting a cyberattack.

The software records specific threats to a given client in a database, which is then analyzed using advanced artificial intelligence and machine learning techniques.

Throughout the process, analysts review the information for both quality control and to conduct further human-based analysis.

“This provides corporate security professionals the means to take early action and avoid cyberattacks altogether,” says Shakarian.

Shakarian has received support for his venture from both ASU and The Armory Incubator, a group that supports veteran-led enterprises. Shakarian is a U.S. Army veteran.

Student helps refugee families get access to computers

Computer systems engineering student Louis Ship worked with health care industry professionals and a health sciences student to create PCs for Refugees.

The team collects donated personal computers and laptops, refurbishes them and distributes them to Syrian refugee families who have settled in metro Phoenix. They also provide training to the families who receive the computers. To provide internet access, PCs for Refugees works with Cox Communications, which has a program to provide low-cost internet service to low-income families.

Their goal is to help individuals overcome the limitations that come with lack of computers, including doing homework, job searches, applications for scholarships and accessing resources. They also help the families learn English by providing English-tutoring software and educational and professional programs on the computers.

PCs for Refugees earned one of three finalist spots in Pakis Social Entrepreneurship Challenge, a competition to find the team with the strongest potential to solve a social challenge.

Riad Sbai, ASU alum and founder and president of PCs for Refugees, shows a family how to use new programs on their donated computer.

Photo: Abdul Rahman Bayazid | The State Press
With many major universities nationwide charging $500 or more per year for parking, two students at ASU created a company to alleviate stress associated with finding affordable parking options near campus.

Scott Fitsimones, a computer science student, worked with a physics and economics major to create AirGarage, an online marketplace for people to list, find and book parking spaces in Tempe, Arizona.

For example, a homeowner with enough room in a driveway for an extra car could list that spot and a driver needing to park in that area could rent it. The students are striving to generate value for both parties by creating a market for extra space on private property that may not have previously been thought of as available parking.

AirGarage earned the SRP Innovation Award and $20,000 in the ASU Innovation Open as the third-place team.

Carole-Jean Wu, an assistant professor of computer science, says doubts over belonging are prevalent among some computer science female students who make up only 15 percent of the major at ASU.

As a result, “We have really bright students who don’t stay” in the program, Wu says, adding that the number of female faculty members in the program is also comparatively low, limiting the role models and future prospects female students see. To try to change that situation, Wu and some of her faculty colleagues have established and maintained support for a scholarship program to send many of the women in the Fulton Schools computer science program to the annual Grace Hopper Celebration of Women in Computing. The event produced by the Anita Borg Institute for Women in Technology and presented in partnership with the Association for Computing Machinery is the world’s largest technical conference for women in computer science.

These accolades are not surprising for a university that was named most innovative in the nation three years in a row, according to a survey of peers published by U.S. News and World Report magazine.

Alumna Varsha Iyengar, ’16 master’s in computer science, now works at Google as a contractor doing motion-capture analysis for Project Soli, a radar chip that analyzes hand gestures and movement. She cites her research at ASU as a tool that helped her get ahead.

A supernova of innovation, Silicon Valley has been drawing the brightest, most creative employees for decades. And increasingly, those workers include Arizona State University graduates.

ASU recently made Business Insider’s list of the top 20 universities for landing a job in the high-tech mecca, and a different analysis, by the online recruiting company HiringSolved, put ASU in the top 10 for sending the most graduates to Silicon Valley.

These accolades are not surprising for a university that was named most innovative in the nation three years in a row, according to a survey of peers published by U.S. News and World Report magazine.

Alumna Varsha Iyengar, ’16 master’s in computer science, now works at Google as a contractor doing motion-capture analysis for Project Soli, a radar chip that analyzes hand gestures and movement. She cites her research at ASU as a tool that helped her get ahead.

With a grant from the Anita Borg Institute’s Building, Recruiting and Inclusion for Diversity initiative, and additional support from CIDSE and ASU’s Global Security Initiative, 50 of ASU’s female computer science students were able to earn scholarships to make the trip to Houston, Texas, for the 2016 Grace Hopper conference. At least 10 additional ASU students attended, some with support from companies for which they work as interns.

The event features leaders in the field, from industry, academia and government, presentations on research, opportunities for networking and mentoring, professional development sessions and a career fair for those seeking jobs and student internships.

Students who attended are emphatic that their profession will contribute more to society if its practitioners are more diverse. Wu has strong support from other ASU computer science colleagues to aid the cause of retaining women in the program to develop the Grace Hopper scholarship program, a Women in Computer Science student club, mentoring opportunities and to raise awareness of the need for women in computer science.

A supernova of innovation, Silicon Valley has been drawing the brightest, most creative employees for decades. And increasingly, those workers include Arizona State University graduates.

ASU recently made Business Insider’s list of the top 20 universities for landing a job in the high-tech mecca, and a different analysis, by the online recruiting company HiringSolved, put ASU in the top 10 for sending the most graduates to Silicon Valley.

These accolades are not surprising for a university that was named most innovative in the nation three years in a row, according to a survey of peers published by U.S. News and World Report magazine.

Alumna Varsha Iyengar, ’16 master’s in computer science, now works at Google as a contractor doing motion-capture analysis for Project Soli, a radar chip that analyzes hand gestures and movement. She cites her research at ASU as a tool that helped her get ahead.

With a grant from the Anita Borg Institute’s Building, Recruiting and Inclusion for Diversity initiative, and additional support from CIDSE and ASU’s Global Security Initiative, 50 of ASU’s female computer science students were able to earn scholarships to make the trip to Houston, Texas, for the 2016 Grace Hopper conference. At least 10 additional ASU students attended, some with support from companies for which they work as interns.

The event features leaders in the field, from industry, academia and government, presentations on research, opportunities for networking and mentoring, professional development sessions and a career fair for those seeking jobs and student internships.

Students who attended are emphatic that their profession will contribute more to society if its practitioners are more diverse. Wu has strong support from other ASU computer science colleagues to aid the cause of retaining women in the program to develop the Grace Hopper scholarship program, a Women in Computer Science student club, mentoring opportunities and to raise awareness of the need for women in computer science.
**Students**

**Innovative ideas make an impact**

CIDSE students applied the entrepreneurial mindset to make up four of 20 student-led startup finalists in ASU’s Edson Student Entrepreneur Initiative in the 2016-2017 academic year.

Projects included Fusion Folder, a folder that attaches to the back of a laptop to store documents; Hygeia, an internet of things platform for efficient waste-management schedules; Knoze, a note sharing and organizing platform; and Distinguished Gentleman’s Club, a subscription box fashion service for big and tall men.

**Foiling malicious agents with a moving target**

Computer science doctoral student Ankur Chowdary has earned more than $1.8 million in grants — including from the DoD — to research a system that can predict cybersecurity attacks and move data around the cloud.

With network security system AVMSec, if a user is identified as secure, they get access to a security key. However, users identified as suspicious get a “shell game” instead.

“For them, the data is moving around very fast in the cloud, and it’s difficult for them to do any malicious act in the system,” Chowdary says.

AVMSec added another $20,000 in cash and $2,500 in services including accounting help, marketing and space as a finalist at the New Venture Challenge entrepreneurial competition. Chowdary predicts a revenue of $100 million by 2021.

**Complex network: Interdisciplinary experts model policy outcomes**

An interdisciplinary team of researchers at ASU is creating a tool to help policymakers make sustainable choices for the future of food, energy and water.

These three resources are inextricably connected, as residents need water for drinking, and water is used to irrigate crops, generate energy and cool power plants. When water levels decrease, it not only affects consumers but agricultural and energy sectors as well.

Successful policy in all sectors takes into account the links, synergies and conflicts between them through anticipatory governance — using data and models to predict how variations will affect our world and how we can proactively plan for the consequences through policy.

This five-year, $3 million NSF Award from the Innovations at the Nexus of Food, Energy and Water Systems program is led by Ross Maciejewski, an assistant professor in computer science, with co-principal investigator Hessam Sarjoughian, an associate professor of computer science, in collaboration with three other ASU faculty.

“People have been seeing the connections between these systems, but not how to deal with them because the policy-making process is so slow,” Maciejewski says. “We need to think about these resources together.”

The areas are so broad you can’t just be an expert in one discipline,” Maciejewski says, “so we rely on others to bring their expertise.”

Maciejewski is an expert on data visualization, Sarjoughian in heterogeneous modeling methods, and others bring expertise in hydrology, water resource engineering, environmental policy, stakeholder engagement, economics and sustainable food systems.

With the help of these experts, computer scientists Maciejewski and Sarjoughian create visualization tools that display the model simulation data in a way that is accessible to individuals outside their domain of expertise.

By creating a way for stakeholders to understand the feedback between the food-energy-water nexus biophysical systems and related economic systems, policies can avoid significant undesirable and unintended consequences.

**Ted talks innovation at TEDxASU talk**

Ted Pavlic, an assistant professor, presented on the idea of blurring traditional disciplinary lines to foster innovation between researchers of all fields as a speaker at TEDxASU in 2017, an independently organized TED conference-format event.

Watch Pavlic’s talk in its entirety: scan the QR code or visit links.asu.edu/tedxasutalk

**Innovation**
Askin recognized with Distinguished Educator Award

The Institute of Industrial Systems and Engineers, the premier professional society for industrial engineering, bestowed professor Ron Askin with 2017’s Albert G. Holzman Distinguished Educator Award. “I feel greatly honored to be included in the list of educators that have received ISE’s Albert G. Holzman Distinguished Educator Award,” said Askin. “It’s both humbling and thrilling as many of the previous winners have been role models for me.”

This marks the first time a faculty member of the Fulton Schools has earned the award since its inception in 1986. Named for the late Albert Holzman, an accomplished industrial engineer at the University of Pittsburgh, the award recognizes educators whose notable contributions to industrial engineering are evident through teaching, research and publication, extension, innovation or administration.

Askin served as director of CIDSE from 2009 to 2016, before stepping down to return his focus to education. “Being a professor is a privilege that comes with great opportunity and responsibility for shaping the next generation of industrial engineers that will lead economic development and contribute to society,” he said.

Earning the gold for outstanding service to students

ASU’s student chapter of the Institute of Industrial and Systems Engineers started the 2017-2018 school year strong — it was awarded Gold Status by the ISE what the student group has done to benefit its members.

Last year, the chapter’s leadership organized career-fair preparation sessions, hosted luncheon events to build relations between students and faculty, partnered with other student clubs to present a “lean manufacturing” workshop and provided scholarships for national IISE memberships and travel to regional and national conferences.

The Gold Status award confirms “that ASU has an active and healthy IISE chapter,” said Monica Kilehua, an industrial engineering major, honors student and the chapter’s president. The ASU chapter’s accomplishments “have been a team effort, the entire leadership team deserves the credit,” says Daniel McCarville, an industrial engineering and engineering management professor of practice who has been the student organization’s faculty advisor for the past three years.

Two faculty elected fellows to prestigious scientific society

Subbarao Kambhampati and Sethuraman Panchanathan are among the 396 newly elected fellows of the American Association for the Advancement of Science, the world’s largest general scientific society.

Becoming a fellow is in recognition of efforts toward advancing science applications that are deemed scientifically or socially distinguished. Within that general framework, each awardee is honored for contributions to a specific field.

Subbarao (Rao) Kambhampati, professor — Kambhampati’s contributions to automated planning and human-aware artificial intelligence systems, and for leadership and service to the AI community have earned his election. His current research focuses on challenges in facilitating effective, trustworthy and collaborative interactions between humans and AI agents (e.g., robots). Kambhampati also is the president of the Association for the Advancement of Artificial Intelligence, which promotes research in, and responsible use of, AI.

Sethuraman (Panch) Panchanathan, executive vice president and chief research and innovation officer, Office of Knowledge Enterprise Development — AAAS recognized Panchanathan’s distinguished contributions to the field of human-centered multimedia computing and for national leadership in research, science, technology and innovation. Panchanathan’s research interests include development of haptic-user interfaces, person-centered tools and ubiquitous computing technologies for enhancing the quality of life of people with disabilities. In his current role, he oversees ASU’s $500 million research enterprise and serves on several national research councils, including the U.S. National Science Board.
In her research, computer science doctoral student Bing Si developed data fusion and system informatics approaches that can improve the quality and performance of health care systems, from diagnosis to care to system-level decision-making.

Health care is now a data-rich environment, thanks to technology advancements in diagnostic imaging, smart sensing and health information systems.

“It is now possible to track every piece of information related to a patient’s diagnosis, treatment and care,” Si explains. “This offers a great opportunity for precision medicine: the ability to offer the right medical decision to the right person at the right time.” But, she adds, the size and complexity of the data overwhelm the modeling capability of existing statistical methods.

In her dissertation, Si focuses on the emerging problems in health care and develops novel statistical models and machine learning algorithms to tackle these problems. Her work could impact the understanding of conditions, such as migraine disorder and traumatic brain injury, and could lead to personalized diagnostic biomarker optimization for Alzheimer’s disease. It might also enable joint data mining of electronic medical records and hospital operational data to improve the quality and safety of health care delivery.

Si’s advisor, Associate Professor Jing Li, is co-director of ASU-Mayo Center for Innovative Imaging. She said Si is a leader in the lab and has won the Grace Hopper Award for her role in championing female and minority students in analytics, computing and health care. Li added Si has already published in premier journals, and “her research has also generated translational impact on medicine and health care.”

“Because of the caliber of our doctoral students, selecting the recipients for the Dean’s Dissertation Award is one of the most difficult things we do each year,” said Kyle Squires, dean of the Fulton Schools. “[Bing] is an excellent student, and making significant contributions in the way technology, particularly big data, impacts the lives of all people.”

Opportunity for precision in medicine

Mirchandani earns IEEE Fellow

Professor and AVNET Chair in Supply Chain Networks Pitu Mirchandani has been granted IEEE Fellow status for “contributions to stochastic dynamic networked systems in intelligent transportation and production systems.”

IEEE is the world’s largest organization of technical professionals.

His work in those areas reflects his broader expertise in the management of complex networked systems, which aids planning and decision making under conditions with uncertainties and random variations.

He’s considered a pioneer in integrating the use of advanced modeling, information technologies and data-driven decision-making tools into transportation and logistics operations. His modeling ideas have explored applications in optimizing energy systems, water distribution systems, urban infrastructure planning and development, land use and health care.

Mirchandani is also a Fellow of the Institute for Operations Research and the Management Sciences.
James Boulton remembers dressing up as a fighter pilot for Halloween when he was in third grade. A dozen years later, he’s ready to zip up his flight suit, put on his aviator glasses and jump in the cockpit.

Boulton started out as an aerospace engineering major “because I thought that would help me get a pilot slot in the U.S. Air Force.” After learning the Air Force cared more about a GPA than a specific major, he met with an advisor who recommended industrial engineering — a field that would tie together his passion for business, finance and math. Boulton changed majors and never looked back. He was a Dean’s List recipient eight times and graduated summa cum laude.

And he is one of a handful of Air Force ROTC cadets in the nation recently selected for the highly competitive Euro-NATO Jet Pilot Training program at Sheppard Air Force Base in Wichita Falls, Texas. He’ll be the first ASU graduate to be part of the program in eight years.

“I’ve prepared my whole life for this moment,” Boulton says. “I’ve earned a really good degree in something that I love from a school that prepared me very, very well.”

Recognition
Students

Industrial engineering grad pilots way to top-tier flight school
Students

Visualization research earns students international recognition

Research in areas ranging from visual analytics and self-organizing particle systems to machine learning and computational genetics has earned some international recognition for ASU students Alexandra Porter and Rolando Garcia. They’re among 37 undergraduate students from colleges and universities throughout North America to recently receive accolades from the Computing Research Association for demonstrating outstanding computing research skills.

Porter, an honors student majoring in computer science and mathematics, with a minor in music performance, was a finalist for one of the top honors bestowed by the Computing Research Association’s 2017 Undergraduate Research Awards program in the category for women at institutions that grant doctoral degrees.

She worked on a nutrition visualization research project with Ross Maciejewski, an assistant professor of computer science, in his Visual Analytics and Data Exploration Research Lab. She created an Android app that enables users to record what they eat and then visualize data about their diets. She co-authored and presented a research paper titled “A Survey of Personal Nutrition in mHealth Nutrition Apps” at the international Person Visualization Workshop organized by the IEEE.

She also worked on self-organizing particle systems with computer science professor Andrea Richa and on creating a simulation of an internet-connected self-driving wheelchair with Umit Ogras, an assistant professor of electrical engineering.

Porter says these varied accomplishments have made her confident that she is well prepared for her pursuit of a doctoral degree in computer science and a career in research.

Garcia is a senior majoring in computer science. He earned an honorable mention in the men’s category.

As a research aide in Maciejewski’s VADER Lab, Garcia has been involved in developing technologies to help people understand and work effectively with large sets of data. He presented findings from his work at two national research symposiums and at an IEEE workshop. For the workshop presentation, his research team earned the Visual Analytics Science and Technology Grand Challenge Award for Outstanding Comprehensive Submission.

Last summer, Garcia was a research intern for the Computational Genetics Laboratory at the Institute of Biomedical Informatics at the University of Pennsylvania. He worked on projects involving Deep Learning architectures, one of a set of machine learning methods based on representations of data.

“My long-term research goal involves studying data structures for achieving fast machine learning at bigger scales,” Garcia says. “The aim is to find out how a computer could become capable of organizing and accessing information so that it can be at least as intelligent as we are.”

Improved imaging in health care

Finding funding for novel research ideas can be challenging. ASU and Mayo Clinic are addressing this challenge.

For 13 years, the Mayo-ASU seed grant program has funded — or seeded — promising new research collaborations between ASU and Mayo Clinic researchers aimed at improving patient care. A seed grant is like startup funding for research — the intent is to launch novel research on a small scale to attract the funding needed for a larger study.

Associate Professor Jing Li and Catherine Chong of the Mayo Clinic were one of the research teams selected for funding in the 2017 Mayo-ASU seed grant program with their project, “Sex-specific profiles of white matter repair following concussion: A longitudinal diffusion tensor imaging study in young athletes.”

In addition, Li was one of eight Alliance for Health Care Fellows chosen to be part of the inaugural Faculty in Residence program between Mayo Clinic and ASU. During the summer 2017 residency, Li used multi-contrast, MRI-based tumor-density maps to guide surgical resection of glioblastoma and improve patient outcomes.

“I’m looking forward to strengthening the collaboration and establish a program between ASU and Mayo with leading-edge research and education enrichment on the interface between data science, mathematical oncology and quantitative imaging,” Li says of her residency.
Degree programs

**Undergraduate degrees**

The Bachelor of Science in Engineering (BSE) in computer systems engineering focuses on the systems that enable computation and communication and the integration of systems software and hardware. It emphasizes the design and development of hardware and software components comprising a computer system. The curriculum includes courses on computer organization and architecture, system programming, operating systems, embedded microsystems and digital hardware design. Although the program addresses numerous application areas, a unique focus on embedded systems sets it apart. A concentration in information assurance is also available.

The Bachelor of Science (BS) in computer science has its foci on computational processes for problem solving, and information transfer and transformation with an emphasis in improving software and system quality, security, performance and usability. It provides a solid background in computing principles and enables students to customize their degrees with technical electives. Students may also select courses in mathematics, other engineering areas and biology to meet requirements. This degree also offers a software engineering concentration in which students have the opportunity to master software development techniques while working in teams. A concentration in information assurance is available for this degree as well.

The Bachelor of Science in Engineering (BSE) in engineering management prepares students to effectively lead engineering-driven enterprises. The curriculum provides a breadth of engineering science and design with depth in one practice area. Study of business practices, organizational behavior and management skills are emphasized. Topics such as project and resource management, financial engineering, risk management, configuration management, service plans, product liability, entrepreneurship and operations management are covered in addition to product design and process development. Graduates will be employable as project management team members, system specification and customer relationship management specialists, production supervisors, supply logistics engineers or similar roles.

The Bachelor of Science (BS) in informatics provides an interdisciplinary experience that responds to the rapidly growing need for skilled informaticians that focus on how people use information. With the tremendous growth in knowledge about computation and its application, informatics represents a large and growing body of knowledge that fits in between disciplinary majors to help utilize computing technology in specific problem domains. Students in the program learn various subjects in software engineering, human-computer interaction, decision theory, organizational behavior and information technology infrastructure. Graduates will develop innovative ways to help people interact with technology and new ways for users to create and share information and to design computational tools that model, aid or automate activities within disciplines such as science, business, geography, education and entertainment.

The Bachelor of Science in Engineering (BSE) in industrial engineering is ranked among the top 20 in the nation. The program concentrates on the design, operation and improvement of the systems required to meet societal needs for products and services. Students complete 33 hours of upper division industrial engineering courses, three semesters hours of technical electives and nine hours of career-focused study area electives. Undergraduates learn to apply systems modeling and analysis skills to ensure that high-quality products and services are achieved with the optimal use of resources.

The Bachelor of Science (BS) in software engineering is a unique project-driven curriculum, establishing a new model for software engineering education. The program is built around the concepts of engaged learning, discovery-based education and learn-by-doing. Students complete projects in every semester of the program to provide emphasis on communication, teamwork, critical thinking and professionalism. Students have flexibility in designing their course of study; they select a software engineering application area such as web applications, mobile systems, or graphics and game development, as their primary focus, and may obtain interdisciplinary knowledge through a second area of their design.

**Master’s degrees**

The Master of Science (MS) in computer science is a research-oriented degree targeted at students with an undergraduate education in the science of computation. It provides advanced coursework and emphasizes student research as well as offering numerous opportunities for interdisciplinary study. Within this degree, a concentration in arts, media and engineering is offered in collaboration with faculty in the electrical engineering program and the Herberger Institute for Design and the Arts. Master’s students can also pursue concentrations in information assurance and biomedical informatics.

The Master of Science (MS) in software engineering is a research-oriented degree targeted at students with an undergraduate education in computer science. The program provides an opportunity for students employed in industry to seek advanced education in computer science. MCS students can pursue a concentration in information assurance. The graduate-level course work emphasizes research topics of current interest, such as embedded systems, information assurance and computer security, multimedia and the arts, database systems, algorithm design and analysis, bioinformatics, sensor and ad hoc networks, data mining, information integration, optical networks and computer-aided geometric design.

The Master of Computer Science (MCS) is an advanced degree targeted at students with an undergraduate education in computer-related disciplines who can benefit from further breadth and background. The program also provides an opportunity for students employed in industry to seek advanced education in computer science. MCS students can pursue a concentration in information assurance. The graduate-level course work emphasizes research topics of current interest, such as embedded systems, information assurance and computer security, multimedia and the arts, database systems, algorithm design and analysis, bioinformatics, sensor and ad hoc networks, data mining, information integration, optical networks and computer-aided geometric design.

The ASU Online MCS is an affordable, 100% online degree offered on Coursera’s platform. engineering.asu.edu/online-mcs

Accredited by the Engineering Accreditation Commission of ABET. www.abet.org
The Master of Science (MS) in **industrial engineering** is designed for students interested in combining knowledge from the physical, mathematical and social sciences to design efficient manufacturing and service systems that integrate people, research, production and supply-chain logistics and enterprise information systems in challenging manufacturing and service environments. Successful industrial engineering concepts are also spreading to the financial, logistics and health care services industries, affording new areas of opportunity for graduates. Students choose from a non-thesis or thesis track in the program.

The Master of Science (MS) in **computer engineering** degree combines resources from CIDSE and the School of Electrical, Computer and Energy Engineering. The program provides the knowledge and skills necessary to advance and develop new paradigms for the design, computing, communications and networking (wired and wireless), control functions, sensing, signal processing and actuation. It’s a multidisciplinary program that builds on the fundamentals of computer science, electrical engineering, industrial engineering and applied mathematics, with a balance between hardware and software courses.

The Doctor of Philosophy degree (PhD) in **computer science** prepares students to undertake fundamental and applied research in computer science in academia, government and industry. Having matured as a discipline in its own right, computer science is now interacting at a new level with other fields, not just in engineering and science but throughout the arts and humanities, education, law, medicine and business. A wealth of experience for computer science doctoral students is available through collaborations with other engineering schools in the Fulton Schools, the Herberger Institute for Design and the Arts, the Center for Embedded Systems and the Translational Genomics Research Institute. The interdisciplinary strength of the degree is enhanced by a concentration in arts, media and engineering, as well as a concentration in information assurance.

The Doctor of Philosophy degree (PhD) in **industrial engineering** offers students a program focused on industrial statistics and quality engineering, applied operations research, production and supply-chain logistics and enterprise information systems in challenging manufacturing and service environments. To complement our traditional strengths in manufacturing, in recent years we’ve developed a focus on health systems. The program has a strong track record of placing graduates in academic positions, as well as in leading industrial labs.

The Doctor of Philosophy (PhD) in **computer engineering** is designed for students with excellent skills in mathematics and physical science who are interested in gaining an in-depth knowledge of the foundational principle of engineering, as they pursue a career in academia, research or a highly technical entrepreneurial innovation. The PhD program provides a broader and more in-depth preparation than the MS program, in anticipation of a demonstrated ability to independently pursue more creative and substantive innovation with higher impact. Students may choose to follow a concentration in either electrical engineering or computer systems engineering.

**Certificate programs**

**Computer Gaming Certificate** is an 18-credit-hour certificate open to any student at ASU (undergraduate, graduate and non-degree seeking) and is designed to provide a comprehensive game development skill set that the student can apply to his or her major. The goal is to apply gaming technology to domain-specific problems. The certificate can also be used as one of the areas of concentration for the Bachelor of Interdisciplinary Studies (BIS) degree.

**Informatics Certificate** is defined as the study of ways in which computer technology can be used to gather, synthesize, store, visualize and interpret information. This certificate is available to students in non-computing majors and will provide them with an understanding of the capabilities and technologies of informatics. The certificate can also be used as one of the areas of concentration for the BIS degree.

**Lean Six Sigma Black Belt Graduate Certificate** is aimed at engineers and managers who oversee tactical and strategic projects as well as various operational functions in their organizations. Six Sigma is a proven systematic approach to continuous improvement of critical processes in a wide range of industrial environments such as banks, manufacturing facilities and hospitals. The American Society of Quality defines the Certified Six Sigma Black Belt as “a professional who can explain Six Sigma philosophies and principles, including supporting systems and tools.”

Lecturer Yoshihiro Kobayashi leads a summer study abroad program in Tokyo to teach students visualization and simulation. While his students see firsthand the engineering marvels that run the megalcity, they implement a computational tool that integrates multiple systems together, such as traffic logistics, complex train system scheduling and AI-agent systems for crowd management. 🌈
Student recognition

Outstanding grads

Fall 2016
James Boulton
Industrial engineering
Ryan Hermens
Computer science
Computer systems engineering
John James “JJ” Robertson
Computer science
Alan Zygutis
Engineering management

Spring 2017
Ahmad Altheeb
Industrial engineering
Cameron Bartee
Software engineering
Kevin Liao
Computer science
Daniel Martin
Computer systems engineering
Hannah Swieczkowski
Informatics
Melissa Thomas
Engineering management

Fall 2017
Anthony J. Kowal III
Software engineering
Nolan Lee
Engineering management
Noah Livingston
Industrial engineering
Stephen Seidel
Computer systems engineering
Richard Tuznik
Computer science

Convocation Ceremony
Student Speaker
Raquel Camarena
Industrial engineering

Dean’s dissertation

Fall 2017
Bing Si
Industrial engineering

Impact awards

Fall 2016
Nichole Emmons
Computer science
Nizar Kury
Computer science

Spring 2017
Julia Armstrong
Engineering management
Patrick Gaines
Computer science
William “Phil” Young
Industrial engineering

In addition to recognizing the Outstanding Graduates and Impact award recipients at Convocation, we also recognize these students for outstanding performance and service.

Outstanding Computer Engineering MS Student
Zhun Yang

Outstanding Computer Science MS Student
Sarath Sreedharan

Computer Science Graduating PhD Student of the Year
Yooseong Kim

Outstanding Industrial Engineering PhD Dissertation Award
Christopher Wishon

Outstanding TA Awards
Sylvia Barnai
Software engineering
Austin Bren
Industrial engineering
Ryan Dougherty
Computer science
Yixing Li
Computer engineering
Undergraduate researchers contribute to creation of new knowledge

Our students have a strong history of participating in the Fulton Undergraduate Research Program (FURI) or the Grand Challenge Scholars Program (GCSP) — two signature programs for the Fulton Schools.

In these programs, students discover the research enterprise—from conceptualizing an idea, developing a plan and investigating the research question to presenting their research outcomes.

Starting in their second semester, FURI students collaborate with faculty across disciplines to conduct important research that addresses real-world challenges. Students in this competitive program are also eligible to receive travel grants to present their work at national conferences.

In the Grand Challenge Scholars Program, also known as GCSP, students conduct research in one of 14 grand challenge themes set forth by the National Academy of Engineering. Research is one part of their five-part program.
Undergraduate research

Engineering management
Ivana Ninkovic
Switchable Adhesive Under Extreme Temperatures

Industrial engineering
Katherine Adams
An Integrated Optimization-Based Tool to Assist Conservation Planning Decisions
Anas Arafat
Data-driven management of post-transplant medications: An APOMDP approach
Alizea Boloori
Data-driven management of post-transplant medications: An APOMDP approach

Informatics
Samantha Baker
Robot Interaction: Investigating the Influence of Gestures on Robot’s Social Presence

Software engineering
John Alden
Autonomous Multi-Agent Communication and Coordination Based Upon the Distributed Control Model
Christopher Diaz
Linked Data for Sustainability
Preston Goulet
IMODS

Informatics
Logan Mathesen
Trust Region Based Stochastic Optimization with Adaptive Restart: A Family of Global Optimization Algorithms
2017 Winter Simulation Conference
Modelling Megacities: An Approach to Modelling Dense Urban Area
INFORMS 2016 International Meeting
Diego Perozo
Student Retention
Feifan Wang
Real Time Control of Geometric Serial Lines with Residence Time Constraints
INFORMS Annual Meeting

Informatics
Cecilia Laplace
A Study of Self-Regulated Learning in Hackathon Environments
Engineering Students Rapidly Learning at Hackathons
ASEE — American Society for Engineering Education
How Does Self-Regulated Learning Present Itself in Hackathons?
Zachary Monroe
Using Machine Learning to Investigate Password Security

Informatics
Tyrine Jamella Pangan
1. Developing Engineering Talent Among Navajo Youth with Chain-Reaction Machines and 2. Towards the Development of Culturally-Relevant Engineering Design Curriculum for Navajo Nation Middle Schools
American Indian Science and Engineering Society
Bryan Parrish
Auto-Redaction of Sensitive Information for Law Briefs
Kevin Sidbon
Autonomous Search in GPS-enabled and GPS-denied Environments
Jonathan Wasserman
SCAN: Static and Customizable Analysis for Node.js
Geoffrey Wong
Characterizing the Energy Efficiency of Fiducial Tracking on Mobile Devices

Grand Challenge Scholars Program
Travel Grant

Master’s portfolio students

<table>
<thead>
<tr>
<th>Student Name/Graduated</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andert, Edward</td>
<td>DocuSign</td>
</tr>
<tr>
<td>Bala Subramaniyan, Arun</td>
<td>ASU</td>
</tr>
<tr>
<td>Gupta, Mayank</td>
<td>Metavision</td>
</tr>
<tr>
<td>Hu, Sheng-Hung</td>
<td>Tesla, Inc.</td>
</tr>
<tr>
<td>Kadloor, Nikhil</td>
<td>Fall 2016</td>
</tr>
<tr>
<td>Kailige, Nikhil</td>
<td>Intuitive Surgical</td>
</tr>
<tr>
<td>Khan, Zarah</td>
<td>Space and Naval Warfare Systems and Command</td>
</tr>
<tr>
<td>Lobo, Loy</td>
<td>Samsung Research America</td>
</tr>
<tr>
<td>Madiraju, Naveen Sai</td>
<td>Fall 2018</td>
</tr>
<tr>
<td>Mian, Sami</td>
<td>Spring 2018</td>
</tr>
<tr>
<td>Mousavi, Seyyedehnasim</td>
<td>Fall 2016</td>
</tr>
<tr>
<td>Ruiyue, Peng</td>
<td>Fall 2016</td>
</tr>
<tr>
<td>Seville, Travis</td>
<td>Salt River Project</td>
</tr>
<tr>
<td>Steptoe, Michael</td>
<td>Fall 2017</td>
</tr>
<tr>
<td>Sur, Indranil</td>
<td>SRO International</td>
</tr>
<tr>
<td>Vementala, Nikhil</td>
<td>ElementData, Inc.</td>
</tr>
<tr>
<td>Venkat Ram, Sudarshan</td>
<td>Fall 2017</td>
</tr>
<tr>
<td>Xiang, Jiang</td>
<td>Nokia</td>
</tr>
<tr>
<td>Yang, Zhun</td>
<td>ASU</td>
</tr>
<tr>
<td>Student Name/Graduated</td>
<td>Title</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>Agarwal, Shubham</td>
<td>Aligning English Sentences with Abstract Meaning Representation Graphs Using Inductive Logic Programming</td>
</tr>
<tr>
<td>Agrawal, Anurag</td>
<td>Evaluation of a Guided Machine Learning Approach for Pharmacokinetic Modeling</td>
</tr>
<tr>
<td>Beejady Murthy Kadekar,</td>
<td>Effects of Error Messages on the Student’s Ability to Understand the Error and Fix the Error</td>
</tr>
<tr>
<td>Harsha Kadekar</td>
<td>Spring 2017</td>
</tr>
<tr>
<td>Bohara, Bhakti</td>
<td>Moving Target Defense Using Live Migration of Docker Containers</td>
</tr>
<tr>
<td>Cheng, Koe Wei</td>
<td>Mining Signed Social Networks Using Unsupervised Learning Algorithms</td>
</tr>
<tr>
<td>Julu, Kalyankaj</td>
<td>Comparing the Impact of Augmented Reality on Social Media: A Case Study of Bangladesh</td>
</tr>
<tr>
<td>Dani, Harsh Vipulbhai</td>
<td>Sentiment Informed Cyberbullying Detection in Social Media</td>
</tr>
<tr>
<td>de Armas, Jadiel</td>
<td>Pingo: A Framework for the Management of Storage of Intermediate Outputs of Computational Workflows</td>
</tr>
<tr>
<td>Dexheimer, Matthew Scott</td>
<td>What Predicts Student Comprehension in Language Learning? Augmenting Student Action with Elapsed Time in an Educational Data Mining Approach</td>
</tr>
<tr>
<td>Dheke, Chinnay</td>
<td>MOOCLink: Linking and Maintaining Quality of Data Provided by Various MOOC Providers</td>
</tr>
<tr>
<td>Gore, Chinnay</td>
<td>Detecting Organizational Accounts from Twitter Based on Network and Behavioral Factors</td>
</tr>
<tr>
<td>Chandrashekhar</td>
<td></td>
</tr>
<tr>
<td>Gutierrez, Garrett David</td>
<td>A Study of Online Security Practices</td>
</tr>
<tr>
<td>Huang, Po-Kai</td>
<td>Orchestration Technology for Blended Instruction Programming Classes</td>
</tr>
<tr>
<td>Kannan, Vignesh</td>
<td>An Analysis of the Memory Bottleneck and Cache Performance of Most Apparent Distortion Image Quality Assessment Algorithm On GPU</td>
</tr>
<tr>
<td>Khairnar, Tejas Sunil</td>
<td>Next Generation Black-Box Web Application Vulnerability Analysis Framework</td>
</tr>
<tr>
<td>Kumar, Ashish</td>
<td>Mixture of Interaction Primitives for Multiple Agents - A Python Framework</td>
</tr>
<tr>
<td>Lagisethy, Jashmi</td>
<td>Towards Building iBeacon-based Smart Incident Response of Indoor Environments for Visually Impaired Users</td>
</tr>
<tr>
<td>Li, Chenyang</td>
<td>Evaluating Tessellation and Screen-Space Ambient Occlusion in WebGL-Based Real-Time Application</td>
</tr>
<tr>
<td>Liang, Xing</td>
<td>Visualizing Numerical Uncertainty in Climate Ensembles</td>
</tr>
<tr>
<td>Lin, Jinn-Pean</td>
<td>Optimizing Heap Data Management on Software Managed Manycore Architectures</td>
</tr>
<tr>
<td>Lin, Rongyu</td>
<td>Mason: Real-time NBA Matches Outcome Prediction</td>
</tr>
<tr>
<td>Longey, Nikhil</td>
<td>Representing Hybrid Transition Systems in Action Language Modulo ODE</td>
</tr>
<tr>
<td>Mandal, Partho</td>
<td>Behavioral Pattern Mining and Modeling in Programming Problem Solving</td>
</tr>
<tr>
<td>Mannava, Manasa Priyamvada</td>
<td>Cognitive Software Complexity Analysis</td>
</tr>
<tr>
<td></td>
<td>Spring 2017</td>
</tr>
</tbody>
</table>

**Placement**

- **IBM**
- **Starbucks Technology Center**
- **Uhaul International Inc.**
- **Amazon**
- **Akamai Technologies**
- **Ipsay**
- **PayPal**
- **Qualcomm Technologies, Inc.**
- **Intuit**
- **OffWorld, Inc.**
- **ASU**
- **Amazon**
- **Bitglass**
- **4C Insights**
- **Ring**
- **SimpleBills Corporation**
<table>
<thead>
<tr>
<th>Student Name/Graduated</th>
<th>Title</th>
<th>Chair/Members</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margaret, Todd</td>
<td>An Investigation of Machine Learning for Password Evaluation</td>
<td>Chair: Guoliang Xue, Gail-Joon Ahn, Dijiang Huang</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>Mishra, Vineet</td>
<td>An Approach to Recovery of Critical Data of Smart Cities Blockchain</td>
<td>Chair: Sik-Sang Yau, Kenneth Goul, Dijiang Huang</td>
<td></td>
</tr>
<tr>
<td>Mittal, Richa</td>
<td>In-vehicle Multimodal Interaction: An Approach to Mitigate Driver Distraction</td>
<td>Chair: Ashraf Gaffar, Ian Femiani, Robert D. Gray</td>
<td></td>
</tr>
<tr>
<td>Modi, Ajay</td>
<td>CMS-Automated Confidence Score Measurement of Threat Feeds</td>
<td>Chair: Ashraf Gaffar, John Femiani, Robert D. Gray</td>
<td>Amazon</td>
</tr>
<tr>
<td>Mukherjee, Tamalika</td>
<td>An Approach to Software Development for Continuous Authentication of Smart Wearable Device Users</td>
<td>Chair: Sik-Sang (Stephen) Yau, Hassan Davulcu, Gail-Joon Ahn</td>
<td>Adobe Systems Incorporated</td>
</tr>
<tr>
<td>Nagra, Shilpa</td>
<td>Evaluation of Storage Systems for Big Data Analytics</td>
<td>Chair: Dijiang Huang, Ming Zhao, Ross Maciejewski, Chen-Jen Chung</td>
<td></td>
</tr>
<tr>
<td>Namasivayam, Bhuvana</td>
<td>Categorization of Phishing Detection Website Features and Using the Feature Vectors to Classify Phishing Websites</td>
<td>Chair: Rida Bazzi, Ziming Zhao, Huan Liu</td>
<td></td>
</tr>
<tr>
<td>Nizar, Kury</td>
<td>Assessing Learning Styles in Computer Science through Adaptive Virtual World</td>
<td>Chair: Brian Nelson, Ihan Hsiao, Yoshihiro Kobayashi</td>
<td>General Motors</td>
</tr>
<tr>
<td>Padaki, Anjali J.</td>
<td>A Scalable Framework for Integrating and Publishing Linked Data on the Web</td>
<td>Chair: Srividya Bansal, Timothy Lindquist, Ajay Bansal</td>
<td>DocuSign</td>
</tr>
<tr>
<td>Panwar, Anupam</td>
<td>Gen: Toward Automatic Generation and Analysis of Indicators of Vaccine ZOCs Using Convolutional Neural Network</td>
<td>Chair: Gail-Joon Ahn, Adam Doupé</td>
<td></td>
</tr>
<tr>
<td>Patel, Tanvi</td>
<td>Learning Object Oriented Programming Using Augmented Reality; A Case Study with Elementary School Students</td>
<td>Chair: Sharon Hsiao, Erin Walker, Brian Nelson</td>
<td></td>
</tr>
<tr>
<td>Patwardhan, Mandar</td>
<td>Assessing the Impact of Usability Design Features of an mHealth App on Clinical Protocol Compliance Using a Mixed Methods Approach</td>
<td>Chair: Kevin Gary, Ashish Amresh, Armando Phna</td>
<td>MathWorks</td>
</tr>
<tr>
<td>Pinto, Gerard Lawrence</td>
<td>Shadow Phone and Ghost SIM: A Step Toward Geo-Location Anonymous Calling in GSM</td>
<td>Chair: Adam Doupé, Ziming Zhao, Gail-Joon Ahn</td>
<td>IBM</td>
</tr>
<tr>
<td>Rallabhandi, Pooja</td>
<td>Monitoring and Improving User Compliance and Data Quality For Long and Repetitive Self-Reporting mHealth Surveys</td>
<td>Chair: Kevin Gary, Ashish Amresh, Srividya Bansal, Asraf Gaffar</td>
<td>Ticketmaster</td>
</tr>
<tr>
<td>Rath, Trideep</td>
<td>Word and Relation Embedding for Sentence Representation</td>
<td>Chair: Chitta Baral, Yezhou Yang, Baoxin Li</td>
<td></td>
</tr>
<tr>
<td>Rathore, Yash Kanaialal</td>
<td>Facilitation Human Robot Collaboration Using a Mixed Reality Projection System</td>
<td>Chair: Hani Ben Amor, Robert Atkinson, Brian Nelson</td>
<td></td>
</tr>
<tr>
<td>Seema Suresh</td>
<td>Intelligent, Interactive, Infotainment System to Hinder Driver Distraction in Cars - The Next Generation of Smart Cars</td>
<td>Chair: Ashraf Gaffar, Javier Gonzalez-Sahnchez, Angela Sodemann</td>
<td>Cirual</td>
</tr>
<tr>
<td>Sharma, Aveesha</td>
<td>Data Science for Small Businesses</td>
<td>Chair: Arbi Ghazarian, Sridiva Bansal, Ashraf Gaffar</td>
<td></td>
</tr>
<tr>
<td>Singh, Shashank</td>
<td>Code-Reco a Semantic Java Method Recommender</td>
<td>Chair: Sharon Hsiao, Erin Walker, Dennis Parra</td>
<td></td>
</tr>
<tr>
<td>Singh, Shibani</td>
<td>Deep-learning-based classification of FDG-PET data for Alzheimer's Disease</td>
<td>Chair: Baoxin Li, Jiaming Liang, Yalin Wang</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>Talsania, Samidh</td>
<td>Computing a Probabilistic Extension of Answer Set Program Language Using ASP and Markov Logic Sokers</td>
<td>Chair: Jochyung Lee, Yezhou Yang, Chitta Baral</td>
<td></td>
</tr>
<tr>
<td>Tiwari, Naveen</td>
<td>Security Vulnerability Analysis of HTTP/2 Protocol</td>
<td>Chair: Gail-Joon Ahn, Ziming Zhao, Adam Doupé</td>
<td>Synopsys</td>
</tr>
<tr>
<td>Wang, Xiaoxiao</td>
<td>Computer Science Education: A Game to Teach Children about Programming</td>
<td>Chair: Brian Nelson, Erin Walker, Pavan Kumar Turaga</td>
<td></td>
</tr>
<tr>
<td>Wong, Audrey</td>
<td>Building Adaptation and Error Feedback in an Intelligent Tutoring System for Reading Comprehension of English Language Learners</td>
<td>Chair: Erin Walker, Brian Nelson, Arthur Glenberg</td>
<td></td>
</tr>
<tr>
<td>Zhang, Xiaoyu</td>
<td>Network Effects in NBA teams; Observation and Algorithms</td>
<td>Chair: Hanghang Tong, Jingrui He, Hassan Davulcu</td>
<td></td>
</tr>
<tr>
<td>Student Name/Graduated</td>
<td>Title</td>
<td>Chair/Members</td>
<td>Placement</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Alshalan, Abdullah Othman M.</td>
<td>MobiVPN: Towards a Reliable and Efficient Mobile VPN</td>
<td>Chair: Dijiang Huang, Gail-Joon Ahn, Adam Doupé, Yanchao Zhang</td>
<td>King Saud University, Riyadh, Saudi Arabia</td>
</tr>
<tr>
<td>Banerjee, Joydeep</td>
<td>Vulnerability and Protection Analysis of Critical Infrastructure Systems</td>
<td>Chair: Arunabha Sen, Partha Dasgupta, Guoliang Xue, Gurulingesh Ravari</td>
<td>Optym</td>
</tr>
<tr>
<td>Buduru, Arun Balaji</td>
<td>An Adaptive Approach to Securing Ubiquitous Smart Devices in IoT Environment with Probabilistic User Behavior Prediction</td>
<td>Chair: Stephen Yau, Hasan Davulcu, Gail-Joon Ahn, Yanchao Zhang</td>
<td>Indraprastha Institute of Information Technology, Delhi, New Delhi, India</td>
</tr>
<tr>
<td>Cai, Jian</td>
<td>Scratchpad Management in Software Managed Manycore Architectures</td>
<td>Chair: Aviral Shrivastava, Partha Dasgupta, Carole-Jean Wu, Fengbo Ren</td>
<td>Apple</td>
</tr>
<tr>
<td>Chandakkar, Parag Shridhar</td>
<td>Towards Learning Representations in Visual Computing Tasks</td>
<td>Chair: Baoxin Li, Hasan Davulcu, Yezhou Yang, Pawan Turaga</td>
<td>Walmart Labs</td>
</tr>
<tr>
<td>Cheeks, Loretta H.</td>
<td>Double Subjectivity: An Exploration of Programmable Insights into Online News Sources Use of News Frames</td>
<td>Chair: Ashraf Gaffar, Adam Doupé, Henri Ben Amor, Nancy Cooke, Dara Wald</td>
<td>Strong ties founder/CEO (consulting)</td>
</tr>
<tr>
<td>Das, Arun</td>
<td>Modeling, Analysis, and Efficient Resource Allocation in Cyber-Physical Systems and Critical Infrastructure Networks</td>
<td>Chair: Arunabha Sen, Guoliang Xue, Georgios Fainekos, Chunming Qiao</td>
<td>Visa USA Inc.</td>
</tr>
<tr>
<td>Demakethepalii Venkateswara, Hemanth Kumar</td>
<td>Domain Adaptive Computational Models for Computer Vision</td>
<td>Chair: Sethuraman Panchanathan, Hasan Davulcu, Baoxin Li, Jieping Ye, Shayok Chakraborty</td>
<td>ASU</td>
</tr>
<tr>
<td>Derakhshandeh, Zahra</td>
<td>Algorithmic Foundations of Self-Organizing Programmable Matter</td>
<td>Chair: Andrea Richa, Arunabha Sen, Guoliang Xue, Christian Scheideler</td>
<td>ASU</td>
</tr>
<tr>
<td>Dokhanchi, Adel</td>
<td>From Formal Requirement Analysis to Testing and Monitoring of Cyber-Physical Systems</td>
<td>Chair: Georgios Fainekos, Yann-Hang Lee, Hassam Sarjoughian, Aviral Shrivastava</td>
<td>ASU</td>
</tr>
<tr>
<td>Faucon, Philippe Christophe</td>
<td>Sequence Alignment and Rectification Techniques for Gene Network Inference</td>
<td>Chair: Huan Liu, Hassam Sarjoughian, Yalin Wang, Sharon Crook, Xiao Wang</td>
<td>Norconsult Informasjonssystemer AS (Norway)</td>
</tr>
<tr>
<td>Gholami, Soroosh</td>
<td>Hybrid Multiresolution Simulation &amp; Model Checking: Network On-Chip Systems</td>
<td>Chair: Hassam Sarjoughian, Aviral Shrivastava, Georgios Fainekos, Umit Ogras</td>
<td>PayPal</td>
</tr>
<tr>
<td>Han, WonKyu</td>
<td>Policy-driven Network Defense for Software Defined Networks</td>
<td>Co-Chairs: Gail-Joon Ahn, Ziming Zhao, Dijiang Huang, Adam Doupé, Yanchao Zhang</td>
<td>Korean Army (ROKA)</td>
</tr>
<tr>
<td>Kim, Jung Hyun</td>
<td>Efficient Node Proximity and Node Significance Computations in Graphs</td>
<td>Chair: Kasim Candan, Hasan Davulcu, Hanghang Tong, Maria Luisa Sapino</td>
<td>American Express</td>
</tr>
<tr>
<td>Kim, Yooseong</td>
<td>WCET-Aware Scratchpad Memory Management for Hard Real-Time Systems</td>
<td>Chair: Aviral Shrivastava, David Broman, Carole-Jean Wu, Georgios Fainekos</td>
<td>Synopsys</td>
</tr>
<tr>
<td>Lee, Shin-Ying</td>
<td>Intelligent Scheduling and Memory Management Technique for Modern GPU Architectures</td>
<td>Chair: Carole-Jean Wu, Chaitali Chakraborti, Aviral Shrivastava, Fengbo Ren</td>
<td>Samsung Austin R&amp;D Center</td>
</tr>
<tr>
<td>Li, Qingyang</td>
<td>Scaling Up Large-scale Sparse Learning and its Application to Medical Imaging</td>
<td>Co-Chairs: Guoliang Xue, Jieping Ye, Jingrui He, Yalin Wang, Jing Li</td>
<td>DiDi Research America</td>
</tr>
<tr>
<td>Student Name/Graduated</td>
<td>Title</td>
<td>Chair/Members</td>
<td>Placement</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Lu, Yafeng</td>
<td>Methodologies in Predictive Visual Analytics</td>
<td>Chair: Ross Maciejewski Huan Liu, Jingrui He, Nancy Cooke</td>
<td>U.S. Army NETCOM HQ, Data Science Directorate</td>
</tr>
<tr>
<td>Mabey, Michael Kent</td>
<td>Forensic Methods and Tools for Web Environments</td>
<td>Co-Chairs: Gail-Joon Ahn, Adam Doupé Stephen Yau, JooHyung Lee, Ziming Zhao</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Mazumder, Anisha</td>
<td>Optimal Resource Allocation in Social and Critical Infrastructure Networks</td>
<td>Chair: Arunabha Sen Andrea Richa, Guoliang Xue, Martin Reisslein</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Morstatter, Fred</td>
<td>Discovering and Mitigating Social Data Bias</td>
<td>Chair: Huan Liu Ross Maciejewski, Subbarao Kambhampati, Kathleen Carley</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>Nagarkar, Parth</td>
<td>Query workload-aware index structures for range searches in 1D, 2D and High-Dimensional spaces</td>
<td>Chair: Kasim Candan Hasan Davulcu, Mohamed Sarwat, Maria Luisa Sapino</td>
<td>New Mexico State University</td>
</tr>
<tr>
<td>Nie, Zhi</td>
<td>Machine Learning Methods for Diagnosis, Prognosis and Prediction of Long-term Treatment of Major Depression</td>
<td>Co-Chairs: Jingrui He, Jieping Ye Guoliang Xue, Baoxin Li</td>
<td>Samsung Research America</td>
</tr>
<tr>
<td>Pisharody, Sandeep</td>
<td>Policy Conflict Management in Distributed SDN Environments</td>
<td>Chair: Dijiang Huang Gail-Joon Ahn, Adam Doupé, Violet Syrotiuk</td>
<td>MIT Lincoln Laboratory</td>
</tr>
<tr>
<td>Qiongjie, Tian</td>
<td>Towards supporting visual question and answering application</td>
<td>Chair: Baoxin Li Hasan Davulcu, Hanghang Tong, Yezhou Yang</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>Rubio Medrano, Carlos E.</td>
<td>Federated Access Management for Collaborative Environments</td>
<td>Chair: Gail-Joon Ahn Ziming Zhao, Adam Doupé, Dijiang Huang, Raghu Santanam</td>
<td>ASU</td>
</tr>
<tr>
<td>Sarkar, Kaushik</td>
<td>Covering Arrays: Algorithms and Asymptotics</td>
<td>Chair: Charles Colbourn Andrzej Czygrinow, Andrea Richa, Violet Syrotiuk</td>
<td>Google</td>
</tr>
<tr>
<td>Shahapurkar, Som</td>
<td>Crossing the Chasm: Deploying Machine Learning Analytics in Dynamic Real-World Scenarios</td>
<td>Chair: Huan Liu Jingrui He, Ashish Amresh, Hasan Davulcu, Eugene Tuv</td>
<td>FICO</td>
</tr>
<tr>
<td>Shan, Yi</td>
<td>Semantic Keyword Search on Large-Scale Semi-Structured Data</td>
<td>Co-Chairs: Yi Chen, Srividya Bansal Hasan Davulcu, Huan Liu</td>
<td>Electronic Arts</td>
</tr>
<tr>
<td>Tadayon, Ramin</td>
<td>A Person-Centric Design Framework for At-Home Motor Learning in Serious Games</td>
<td>Chair: Sutharaman Panchanathan Baoxin Li, Ashish Amresh, Arthur Glenberg, Troy McDaniel</td>
<td>ASU</td>
</tr>
<tr>
<td>Tu, Huahong</td>
<td>From Understanding Telephone Scams to Implementing Authenticated Caller ID Transmission</td>
<td>Co-Chairs: Gail-Joon Ahn, Adam Doupé Yanchao Zhang, Dijiang Huang, Ziming Zhao</td>
<td>University of Maryland, College Park</td>
</tr>
<tr>
<td>Venkatesan, Ragav</td>
<td>Novel Image Representations and Learning Tasks</td>
<td>Chair: Baoxin Li Pavan Turaga, Yezhou Yang, Hasan Davulcu</td>
<td>Amazon Web Services</td>
</tr>
<tr>
<td>Wang, Feng</td>
<td>Visual Analytics Methods for Exploring Geographically Networked Phenomena</td>
<td>Chair: Ross Maciejewski Hasan Davulcu, Paul Shakarian, Anthony Grubesic</td>
<td>GE Global Research Center</td>
</tr>
<tr>
<td>Wu, Huijun</td>
<td>Mobile Cloud Application Framework and Offloading Strategies</td>
<td>Chair: Dijiang Huang Partha Dasgupta, Guiliang Xue, Pitu Mirchandani</td>
<td>Twitter</td>
</tr>
<tr>
<td>Yang, Jian</td>
<td>A Biased Topic Modeling Approach for Case Control Study from Health Related Social Media Postings</td>
<td>Co-Chairs: Hasan Davulcu, Graciela Gonzalez Huan Liu, Paul Shakarian</td>
<td>Data &amp; Decision</td>
</tr>
<tr>
<td>Yang, Tao</td>
<td>Structured Sparse Methods for Imaging Genetics</td>
<td>Chair: Jieping Ye Guoliang Xue, Jing Li, Baoxin Li, Jingrui He</td>
<td>Baidu USA LLC</td>
</tr>
<tr>
<td>Zhong, Peide</td>
<td>Multi-Tenancy and Sub-Tenancy Architecture in Software-As-A-Service (SaaS)</td>
<td>Chair: Hasan Davulcu Hessam Sarjoughian, Dijiang Huang, Wei-Tek Tsai</td>
<td>Linkedin.com</td>
</tr>
</tbody>
</table>
Research centers

ASU-Mayo Center for Innovative Imaging
The ASU-Mayo Center for Innovative Imaging promotes the collaborative and multidisciplinary effort to bridge engineering research with clinical practices. Researchers in the center strive to improve patient care by developing innovative therapeutic technologies, imaging acquisitions, imaging analytic tools, machine learning and artificial intelligence algorithms, taking a patient-inspired approach.

Director: Teresa Wu
Website: amci.asu.edu

Center for Cybersecurity and Digital Forensics
CDF brings together leading faculty in engineering, social sciences, law and business to conduct research focused on identity management, privacy issues, malware attribution, secure mobile devices, and digital forensics. CDF will promote the invention and commercialization of cybersecurity and digital forensics research. Researchers in the center are working with Starbucks to introduce security engineering principles to students from their first semester through senior projects.

Director: Gail-Joon Ahn
Website: globalsecurity.asu.edu/center-cybersecurity-and-digital-forensics

iLux
iLux sheds light on usability issues facing commercial clients by providing accurate and objective consumer behavior gathered with a comprehensive biometric sensor suite that includes EEG, brain computer interface, eye tracking, facial coding and galvanic skin response. The researchers can measure a person's physical responses to different kinds of stimuli. The lab is part of the adidas-ASU Global Sport Alliance, a strategic partnership aimed at shaping the future of sport and amplifying sport's positive impact on society.

Director: Robert Atkinson
Website: iluxlab.asu.edu

Industrial Assessment Center
Faculty and students in the ASU IAC conducts free energy efficiency and cybersecurity assessments for small manufacturers with fewer than 500 employees, gross annual sales below $100 million and energy bills between $100,000 and $2.5 million per year. The ASU IAC serves an area beyond Arizona into southern Nevada/Las Vegas and western New Mexico.

Director: Rene Villalobos | Website: iac.engineering.asu.edu

Information Assurance Center
The IAC is a multidisciplinary center focusing on research and educational activities to address the broad issues of developing trustworthy information systems and ensure the quality of information being stored, processed and transmitted by information systems and networks. Our current research activities involve foundational, network, system and application aspects of developing and testing TIS; steganography; processed and transmitted by information systems and networks. Our current research activities involve foundational, network, system and application aspects of developing and testing TIS; steganography; facial recognition, video surveillance, multimedia data processing, dynamic and deterministic quality of service management; data mining for security, privacy in data management; and situation-awareness.

Director: Stephen S. Yau | Website: ia.asu.edu

Center for Accelerating Operational Efficiency, A Department of Homeland Security Center of Excellence
The charge for the CAOE is to support real-time decision-making through the application of advanced analytical tools that enable DHS operational components and other security practitioners to achieve improvements in operational efficiency. Our four major research themes include data analytics, operations research, economic analysis and homeland security risk sciences.

Director: Ross Maciejewski | Website: caoe.asu.edu

Center for Cognitive Ubiquitous Computing
The Center for Cognitive Ubiquitous Computing serves the needs of individuals who are physically challenged by empowering them with ubiquitous and pervasive computing technologies to enrich their lives. Researchers in our interdisciplinary research center focus on cutting-edge research targeting a variety of applications, balance technology and a problem-centric view to identify and tackle the target applications that truly require a ubiquitous computing solution.

Director: Sethuraman "Panch" Panchanathan
Website: cubic.asu.edu

Center for Assured and SCAlable Data
CASCADE is solving complex problems through data intensive research and providing informed answers to key societal needs. Our center aims to enable a principled framework for reliable and timely data-driven decision-making and supports the innovation of data architectures and tools that can match the scale of the data.

Director: K. Selçuk Candan
Website: cascade.asu.edu

Center for Embedded Systems
The Center for Embedded Systems is an NSF Industry/University Cooperative Research Center. Our center researches the inner workings of embedded computer systems — special purpose computer systems designed to perform one or a few dedicated functions and are part of a complete device including hardware and mechanical parts. Most people use some form of embedded systems in their daily interactions at work and at home.

Director: Sarma Vrudhula
Website: ces.asu.edu
Ruben Acuna  
Lecturer  
MS, Arizona State University  
Software engineering

Gail-Joon Ahn  
Professor  
PhD, George Mason University  
Computer science and engineering

Ashish Amresh  
Assistant Professor  
PhD, Arizona State University  
Software engineering

Ronald Askin  
Professor  
PhD, Georgia Institute of Technology  
Industrial engineering

Robert Atkinson  
Associate Professor  
PhD, University of Wisconsin, Madison  
Informatics

Janaka Balasooriya  
Lecturer  
PhD, Georgia State University  
Computer science and engineering

Ajay Bansal*  
Assistant Professor  
PhD, University of Texas at Dallas  
Software engineering

Srividya Bansal  
Assistant Professor  
PhD, University of Texas at Dallas  
Software engineering

Chitta Baral  
Professor  
PhD, University of Maryland, College Park  
Computer science and engineering

Tyler Baron*  
Lecturer  
PhD, Arizona State University  
Computer Science

Rida Bazzi  
Associate Professor  
PhD, Georgia Institute of Technology  
Computer science and engineering

Heni Ben Amor  
Assistant Professor  
PhD, Technical University Freiberg  
Computer science and engineering

Kevin Burger  
Lecturer  
MS, University of Kansas  
Computer science and engineering

Debra Calliss  
Senior Lecturer  
PhD, Arizona State University  
Computer science and engineering

K. Selçuk Candan  
Professor  
PhD, University of Maryland, College Park  
Computer science and engineering

Linda Chattin  
Principal Lecturer  
PhD, State University of New York at Buffalo  
Industrial engineering

Yinong Chen  
Senior Lecturer  
PhD, University of Karlsruhe  
Computer science and engineering

Michael Clough  
Lecturer  
MS, Arizona State University  
Industrial engineering

Charles Colbourn  
Professor  
PhD, University of Toronto  
Computer science and engineering

James Collofello  
Professor, Vice Dean  
PhD, Northwestern University  
Computer science and engineering

Partha Dasgupta  
Associate Professor  
PhD, University of New York at Stony Brook  
Computer science and engineering

Hasan Davulcu  
Associate Professor  
PhD, State University of New York at Stony Brook  
Computer science and engineering

Adam Doupé  
Assistant Professor  
PhD, University of California, Santa Barbara  
Computer science and engineering

Adolfo Escobedo  
Assistant Professor  
PhD, Texas A&M University  
Industrial engineering

Georgios Fainekos  
Associate Professor  
PhD, University of Pennsylvania  
Computer science and engineering

K. Selçuk Candan  
Professor  
PhD, University of Maryland, College Park  
Computer science and engineering

Xuerong Feng  
Lecturer  
PhD, University of Texas, Dallas  
Computer science and engineering

Stephanie Forrest*  
Professor  
PhD, University of Michigan  
Computer science and engineering

Ashraf Gaffar  
Assistant Professor  
PhD, Concordia University  
Software engineering

Kevin Gary  
Associate Professor, Program Chair  
PhD, Arizona State University  
Software engineering

Esma Gel  
Associate Professor  
PhD, Northwestern University  
Industrial engineering

Stephenie Gil*  
Assistant Professor  
PhD, Massachusetts Institute of Technology  
Computer science and engineering

Javier Gonzalez-Sanchez  
Lecturer  
PhD, Arizona State University  
Software engineering

Kanika Grover  
Lecturer  
PhD, Auburn University  
Computer science and engineering

Sandeep Gupta  
Professor, School Director  
PhD, Ohio State University  
Computer science and engineering

Dianne Hansford  
Lecturer  
PhD, Arizona State University  
Computer science and engineering

Jingrui He  
Assistant Professor  
PhD, Carnegie Mellon University  
Computer science and engineering

Robert Heinrichs*  
Lecturer  
PhD, Technische Universität Berlin  
Software engineering

Sharon Hsiao  
Assistant Professor  
PhD, University of Missouri — Kansas City  
Computer science and engineering

Dijiang Huang  
Associate Professor  
PhD, University of Pittsburgh  
Computer science and engineering

Cheryl L. Jennings  
Lecturer  
PhD, Arizona State University  
Industrial engineering

* New faculty
CIDSE faculty

Feng Ju  
Assistant Professor  
PhD, University of Wisconsin — Madison  
Industrial engineering

Joseph Juarez*  
Lecturer  
PhD, Arizona State University  
Industrial engineering

Subbarao (Rao) Kambhampati  
Professor  
PhD, University of Maryland  
Computer science and engineering

Yoshiiro Kobayashi  
Lecturer  
PhD, University of California, Los Angeles  
Computer science and engineering

Joohyung Lee  
Associate Professor  
PhD, University of Texas at Austin  
Computer science and engineering

Yann-Hang Lee  
Professor  
PhD, University of Michigan  
Computer science and engineering

Baoxin Li  
Professor, Program Chair  
PhD, University of Maryland, College Park  
Computer science and engineering

Jing Li  
Associate Professor  
PhD, University of Michigan  
Industrial engineering

Tim Lindquist  
Professor  
PhD, Iowa State University  
Software engineering

Huan Liu  
Professor  
PhD, University of Southern California  
Computer science and engineering

Ross Maciejewski  
Assistant Professor  
PhD, Purdue University  
Computer science and engineering

Christopher Mar  
Instructor  
MS, Arizona State University  
Software engineering

Daniel McCarrville  
Professor of Practice  
PhD, Arizona State University  
Industrial engineering

Alexandra Mehlhase  
Lecturer  
PhD, Technische Universität Berlin  
Software engineering

Ryan Meuth  
Lecturer  
PhD, Missouri University of Science and Technology  
Computer science and engineering

Phill Miller  
Lecturer  
MBA, Northcentral University  
Computer science and engineering

Pitu Mirchandani  
Professor, The Avnet Chair in Supply Chain Networks  
ScD, Massachusetts Institute of Technology  
Industrial engineering

Douglas Montgomery  
Regents’ Professor  
PhD, Virginia Tech  
Industrial engineering

Mutsumi Nakamura  
Principal Lecturer  
PhD, University of Texas, Arlington  
Computer science and engineering

Brian Nelson  
Associate Professor  
EdD, Harvard University  
Computer science and engineering

Rong Pan  
Associate Professor, Program Chair  
PhD, Pennsylvania State University  
Industrial engineering

Sethuraman Panchanathan  
Professor, ASU Senior Vice President for Knowledge Enterprise Development  
PhD, University of Ottawa  
Computer science and engineering

Paolo Papotti  
Assistant Professor  
PhD, Universita’ degli Studi Roma Tre  
Computer science and engineering

Ted Pavlic  
Assistant Professor  
PhD, The Ohio State University  
Industrial engineering

Giulia Pedrielli  
Assistant Professor  
PhD Politecnico di Milano, Italy  
Industrial engineering

Fengbo Ren  
Assistant Professor  
PhD, University of California, Los Angeles  
Computer science and engineering

Andrea Richa  
Professor  
PhD, Carnegie Mellon University  
Computer science and engineering

George Runger  
Professor  
PhD, University of Minnesota  
Industrial engineering

Doug Sandy  
Lecturer  
PhD, University of Minnesota  
Computer science and engineering

Hessam Sarjoughian  
Associate Professor  
PhD, University of Arizona  
Computer science and engineering

 Mohamed Sarwat  
Assistant Professor  
PhD, University of Minnesota  
Computer science and engineering

Jorge Sefair  
Assistant Professor  
PhD, University of Florida  
Industrial engineering

Justin Selgrad  
Lecturer  
MS, Washington University in St. Louis  
Computer science and engineering

Arunabha Sen  
Professor  
PhD, University of South Carolina  
Computer science and engineering

Paulo Shakarian  
Assistant Professor  
PhD, University of Maryland, College Park  
Computer science and engineering

Yan Shoshitaishvili*  
Assistant Professor  
PhD, University of California, Santa Barbara  
Computer science and engineering

Aviral Shrivastava  
Associate Professor  
PhD, University of California, Irvine  
Computer science and engineering

Dan Shunk  
Professor  
PhD, Purdue University  
Industrial engineering

Siddarth Srivastava*  
Assistant Professor  
PhD, University of Massachusetts Amherst  
Computer science and engineering

Violet Syrotiuk  
Associate Professor  
PhD, University of Waterloo  
Computer science and engineering

* New faculty
Farideh Tadayon-Navabi
Senior Lecturer
MS, University of Louisiana at Lafayette
Computer science and engineering

Hanghang Tong
Assistant Professor
PhD, Carnegie Mellon University
Computer science and engineering

Kurt VanLehn
Professor, The Diane and Gary Tooker Chair for Effective Education in Science, Technology, Engineering and Math
PhD, Massachusetts Institute of Technology
Computer science and engineering

J. Rene Villalobos
Associate Professor
PhD, Texas A&M University
Industrial engineering

Sarma Vrudhula
Professor
PhD, University of Southern California
Computer science and engineering

Erin Walker
Assistant Professor
PhD, Carnegie Mellon University
Computer science and engineering

Yalin Wang
Assistant Professor
PhD, University of Washington
Computer science and engineering

Richard Whitehouse
Senior Lecturer
MS, University of Tennessee
Software engineering

Carole-Jean Wu
Assistant Professor
PhD, Princeton University
Computer science and engineering

Teresa Wu
Professor
PhD, University of Iowa
Industrial engineering

Guoliang Xue
Professor
PhD, University of Minnesota
Computer science and engineering

Hao Yan*
Assistant Professor
PhD, Georgia Institute of Technology
Industrial engineering

Yezhou Yang
Assistant Professor
PhD, University of Maryland, College Park
Computer science and engineering

Stephen Yau
Professor
PhD, University of Illinois
Computer science and engineering

Nong Ye
Professor
PhD, Purdue University
Industrial engineering

Yu (Tony) Zhang
Assistant Professor
PhD, University of Tennessee, Knoxville
Computer science and engineering

Ming Zhao
Associate Professor
PhD, University of Florida
Computer science and engineering

The ASU Graduate College endorses more than 135 interdisciplinary faculty to chair or co-chair doctoral committees for CIDSE students.
Learn more at graduate.asu.edu

* New faculty
William R. “Bill” Uttal, an emeritus professor of engineering at ASU and emeritus professor of psychology at the University of Michigan, passed away on February 9, 2017.

Uttal was a pioneering researcher in the realm of cognitive neuroscience who authored dozens of important books in his field and more than 140 scholarly articles.

He was introduced to the study of electronics and computing in the Air Force during the Korean War. After the war, he worked in the aviation industry programming computers before deciding to continue his education.

He pursued his doctorate at the Ohio State University where his research focused on experimental psychology and biophysics. He studies and subsequent research at IBM occurred during an interesting time in computing history including the birth of computer-assisted instruction. He developed CAI courses on German, statistics and stenography.

Through it all, he contributed valuable knowledge to the intersection of psychology and computing.

After teaching at the University of Michigan for more than 20 years and three years of work with the Navy in Hawaii to research autonomous underwater vehicle system vision, he joined ASU in 1988. At ASU, he was the chair of the psychology department and later took his expertise to help engineering faculty. He studied visual systems as well as the neural and psychological foundations behind human interactions with computers.

Uttal worked with the industrial engineering department, which later became a part of the Fulton Schools, and he collaborated with prominent faculty including Regents’ Professor Doug Montgomery, Professor Ron Askin, Professor Dan Shunk, Professor Emeritus David Bedworth and Professor Emeritus Phil Wolfe. Uttal retired from ASU in 1999, earning a second emeritus professor status.

When Gerald Farin worked with colleagues to establish the Partnership for Research in Spatial Modeling center at ASU, he showed how design and the arts at ASU, as well as other disciplines, could benefit from geometric modeling.

Now more than two decades later, a new visualization and prototyping lab at the School of Art’s Grant Street Studios in downtown Phoenix will be dedicated in Farin’s memory.

“He was a trusted colleague and legendary teacher who guided a generation of students at ASU from 1987 until his death in 2016,” says Dan Collins, one of the founders of the PRISM lab and a professor of intermedia in the School of Art, part of the Herberger Institute of Design and the Arts.

The new Gerald Farin Lab for 3D Visualization and Prototyping promises to be a space where researchers, students and collaborators will benefit from its resources.

Thanks to a generous one-time grant from ASU President Michael Crow, the lab will have five systems — four 3D printers and one small computer numerical control router. Other equipment includes a new high-resolution, handheld 3D scanner as well as DIY-type body scanners.

In addition, local engineer Steve Graber is in the process of building a large-scale “deltabot”-type machine for the lab that will be capable of creating a printed object more than four feet tall.
Outreach

Inspiring future engineers

CIDSE and the Fulton Schools host a variety of on-campus activities, after-school programs, summer camps and collaborations with faculty and engineering student organizations in an effort to engage Arizona’s K-12 students and create pathways that encourage them to become technically savvy, prepare for studies in science, technology, engineering and math fields and pursue careers in engineering. Through creative, hands-on activities, we hope to inspire these young students and show how engineering impacts our lives every day.

Game Camp

Game Camp is a unique, hands-on opportunity for middle and high school students to learn intensive video game creation, visualization and production. Campers use the latest software, hardware and development tools to create concepts and prototypes for 2D and 3D video gaming.

App Camp

App Camp teaches high school students the basics of iPhone app development. Participants learn the skills needed to create and develop smartphone apps. This year, the camp covered Apple XCode, Objective-C, Javascript, HTML5, user-interface design principles, mobile application design and development considerations, iPhone app construction, advanced debugging techniques, Web application development for portability and more.

Robotics Camp

ASU’s Robotics Camps are a summer program series designed for middle school and high school students who intend to pursue a science and engineering career.

Camp instructors use component-based robot construction, robotics programming, web programming and Alice game programming as a vehicle to teach the latest engineering design concepts and computing technologies. The robots built by students enter a robotics challenge and demonstration at the end of the camp.

Ultimate Technology Boot Camp

ASU’s Ultimate Technology Boot Camp is a completely residential camp where high school students experience life on the Polytechnic campus for 10 days. Campers learn how to create mobile apps, develop cutting-edge games, design and build robots and more from award-winning faculty and instructors. They work together in teams to learn design, development and content integration for software like games and apps.

Adventures in Computing Camp

Adventures in Computing Camp teaches beginners broad object-oriented programming concepts common to modern programming, then building on that foundation with an overview of Python. Campers start by learning how to create programs using Python; how to create easy-to-use graphical interfaces and how to draw pictures from code.
Above, beyond and always moving us forward, our staff contributions to the school are invaluable. Thank you for your efficiency, integrity and always getting things done.

Ellie Ahmann  
Academic Success Specialist, Graduate

Betsy Allen  
Student Support Specialist

Sharon Amundson  
Business Operations Specialist

Stephen Andrade  
Student Services Coordinator Associate

Amy Bennett  
Research Advancement Administrator, Sr.

Bulent Bicer  
Program Manager, ATIC Staff

Susan Borgers  
Academic Success Coordinator, Undergraduate

Lori Borsheim  
Student Services Coordinator, Sr.

Kassy Buck  
Project Coordinator, ATIC Staff

Theresa Chai  
Academic Financial Specialist

Lisa Christian  
Project Coordinator, Embedded Systems

Jami Cluff  
Academic Success Specialist

Abigail Colquhoun  
Office Specialist

Allison Curran  
Assistant Director, Academic Advising

Robert Dent  
System Support Analyst

Megan Derksen  
Research Advancement Administrator

Michelle Couch  
Academic Success Specialist, Undergraduate

Monica Dugan  
Administrative Associate

Pamela Dunn  
Dept. HR Specialist Sr.

Cherisse Frizzel  
Student Services Coordinator Associate

Tricia Gillam  
Academic Success Specialist

Kirk Hagen  
Academic Success Specialist

Ria Hermann  
Academic Success Specialist

Araxi Hovhannessian  
Manager, Graduate Academic Advising

Jayson Johnson  
Research Advancement Specialist

Joseph Kaufman  
Academic Success Specialist

Arzuhan Kavak  
Academic Success Specialist, Graduate

Nicole Keegan  
Student Services Coordinator Associate

Fred Kroller  
Systems Support Analyst

Kevin Link  
Academic Success Specialist

Blanca Loera de Avilez  
Academic Success Specialist

Vanessa Lucero  
Academic Success Specialist

Brint MacMillan  
Systems Support Analyst

Leah Miller  
Academic Success Specialist

Angie Mondragon  
HR Specialist

Mark Morales  
Research Advancement Manager

Beverly Naig  
Business Operations Manager, Sr.

Denise Odom  
Academic Success Coordinator

Rebekah Padden  
Research Advancement Specialist

Tristan Parker  
Systems Support Analyst

Wendela Phung  
Academic Success Specialist

Lindsey Randolph  
Research Advancement Administrator, Sr.

Greg Raney  
Systems Support Analyst

Jana Reisslein  
Program Coordinator

Shawn Rudnick  
Academic Success Specialist

Bernie Sadauskas  
Research Advancement Administrator, Sr.

Arthur Sainz  
Academic Financial Specialist, Sr.

Frances Salas  
Assistant to the Director

Mayumi Sato  
Research Advancement Administrator, Sr.

Christina Sebring  
Academic Success Specialist

Ana Sifuentes  
Academic Success Specialist

Sedge Simms  
Academic Success Specialist

Lincoln Slade  
IT Manager

Deborah Smith  
Academic Success Coordinator

Yvette Smith  
Academic Success Specialist

Denise Spisak  
HR Specialist

Peter Templeton  
Systems Support Analyst

Tammara Walden  
Academic Success Specialist

Yang Wen  
Research Advancement Administrator

James White  
Systems Support Analyst

Staff recognized at 2017 IMPACT awards lunch

The Fulton Schools IMPACT awards recognize staff members who distinguish themselves through performance, innovative projects and exemplary teamwork.

IMPACT nominees are: Stephen Andrade, Robert Dent, Arzuhan Kavak and James White

Fulton Difference recipient is Allison Curran

Allison Curran, manager of academic advising for CIDSE, received the Fulton Difference Award for her outstanding contributions as a leader in the Fulton Schools.