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Abstract: 
This work explores the application of deep learning, a machine learning technique that uses deep neural 
networks (DNN) in its core, to an automated theorem proving (ATP) problem. To this end, we construct 
a statistical model that quantifies the likelihood that a proof is indeed a correct one of a given 
proposition. Based on this model, we give a proof-synthesis procedure that searches for a proof in the 
order of the likelihood. This procedure uses an estimator of the likelihood of an inference rule being 
applied at each step of a proof. As an implementation of the estimator, we propose a proposition-to-
proof architecture, which is a DNN tailored to the automated proof synthesis problem. To empirically 
demonstrate its usefulness, we apply our model to synthesize proofs of propositional logic. We train 
the proposition-to-proof model using a training dataset of proposition-proof pairs. The evaluation 
against a benchmark set shows the very high accuracy and an improvement to the recent work of neural 
proof synthesis. 
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